A379845 Even squarefree numbers x such that the product of prime indices of x is a multiple of the sum of prime indices of x.
2, 30, 154, 190, 390, 442, 506, 658, 714, 874, 1110, 1118, 1254, 1330, 1430, 1786, 1794, 1798, 1958, 2310, 2414, 2442, 2470, 2730, 2958, 3034, 3066, 3266, 3390, 3534, 3710, 3770, 3874, 3914, 4042, 4466, 4526, 4758, 4930, 5106, 5434, 5474, 5642, 6090, 6106
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 2: {1} 30: {1,2,3} 154: {1,4,5} 190: {1,3,8} 390: {1,2,3,6} 442: {1,6,7} 506: {1,5,9} 658: {1,4,15} 714: {1,2,4,7} 874: {1,8,9} 1110: {1,2,3,12}
Crossrefs
Even squarefree case of A326149.
For nonprime instead of even we have A326158.
Squarefree case of A379319.
Even case of A379844.
A003963 multiplies together prime indices.
A005117 lists the squarefree numbers.
A056239 adds up prime indices.
Counting and ranking multisets by comparing sum and product:
Programs
-
Mathematica
Select[Range[2,1000],EvenQ[#]&&SquareFreeQ[#]&&Divisible[Times@@prix[#],Plus@@prix[#]]&]
Comments