This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379878 #12 Jan 23 2025 04:27:40 %S A379878 1,0,1,8,97,1544,30673,732752,20486401,656713520,23755416481, %T A379878 957430990328,42552022022497,2067669370359800,109058922249721585, %U A379878 6205740584180119424,378947624701223801089,24718152376534891564256,1715322065909959400535361,126186162087426817989206888 %N A379878 E.g.f. A(x) satisfies A(x) = exp(-x) + x*A(x)^3. %F A379878 a(n) = -n! * Sum_{k=0..n} (-2*k-1)^(n-k-1) * binomial(3*k,k)/(n-k)!. %F A379878 a(n) ~ (-1)^n * sqrt(-LambertW(-8/27) - 1) * 2^n * n^(n-1) / (3 * exp(n) * LambertW(-8/27)^(n + 1/2)). - _Vaclav Kotesovec_, Jan 23 2025 %t A379878 Table[-n! * Sum[(-2*k-1)^(n-k-1) * Binomial[3*k, k] / (n-k)!, {k, 0, n}], {n, 0, 20}] (* _Vaclav Kotesovec_, Jan 23 2025 *) %o A379878 (PARI) a(n) = -n!*sum(k=0, n, (-2*k-1)^(n-k-1)*binomial(3*k, k)/(n-k)!); %Y A379878 Cf. A379871, A379876, A379877. %Y A379878 Cf. A000166, A379879. %K A379878 nonn %O A379878 0,4 %A A379878 _Seiichi Manyama_, Jan 05 2025