cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379888 Decimal expansion of the surface area of a pentagonal hexecontahedron with unit shorter edge length.

Original entry on oeis.org

1, 6, 2, 6, 9, 8, 9, 6, 4, 1, 9, 8, 4, 6, 6, 6, 2, 6, 7, 6, 8, 7, 2, 5, 8, 2, 4, 1, 2, 1, 3, 7, 9, 5, 9, 7, 0, 9, 7, 1, 8, 2, 2, 3, 6, 6, 4, 0, 3, 8, 2, 5, 8, 8, 3, 1, 8, 7, 7, 7, 1, 4, 4, 7, 4, 9, 3, 6, 4, 3, 1, 2, 8, 5, 5, 8, 2, 0, 1, 5, 3, 5, 7, 4, 1, 9, 8, 0, 4, 3
Offset: 3

Views

Author

Paolo Xausa, Jan 07 2025

Keywords

Comments

The pentagonal hexecontahedron is the dual polyhedron of the snub dodecahedron.

Examples

			162.69896419846662676872582412137959709718223664038...
		

Crossrefs

Cf. A379889 (volume), A379890 (inradius), A379891 (midradius), A379892 (dihedral angle).
Cf. A377804 (surface area of a snub dodecahedron with unit edge length).
Cf. A001622.

Programs

  • Mathematica
    First[RealDigits[Root[961*#^12 - 33925050*#^10 + 238487439375*#^8 - 374285139187500*#^6 + 215543322643359375*#^4 - 200764566730722656250*#^2 + 19088214930090087890625 &, 8], 10, 100]]  (* or *)
    First[RealDigits[PolyhedronData["PentagonalHexecontahedron", "SurfaceArea"], 10, 100]]

Formula

Equals 30*(2 + 3*t)*sqrt(1 - t^2)/(1 - 2*t^2), where t = ((44 + 12*A001622*(9 + sqrt(81*A001622 - 15)))^(1/3) + (44 + 12*A001622*(9 - sqrt(81*A001622 - 15)))^(1/3) - 4)/12.
Equals the largest real root of 961*x^12 - 33925050*x^10 + 238487439375*x^8 - 374285139187500*x^6 + 215543322643359375*x^4 - 200764566730722656250*x^2 + 19088214930090087890625.