cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379889 Decimal expansion of the volume of a pentagonal hexecontahedron with unit shorter edge length.

Original entry on oeis.org

1, 8, 9, 7, 8, 9, 8, 5, 2, 0, 6, 6, 8, 8, 5, 2, 7, 9, 1, 0, 6, 3, 2, 3, 0, 8, 6, 1, 9, 4, 4, 7, 3, 7, 9, 6, 9, 9, 1, 0, 6, 0, 3, 3, 6, 2, 9, 7, 3, 6, 1, 1, 5, 6, 6, 1, 4, 6, 7, 9, 8, 0, 6, 7, 5, 5, 7, 5, 7, 4, 0, 4, 9, 5, 6, 8, 6, 8, 1, 3, 6, 9, 9, 0, 1, 0, 4, 0, 1, 9
Offset: 3

Views

Author

Paolo Xausa, Jan 07 2025

Keywords

Comments

The pentagonal hexecontahedron is the dual polyhedron of the snub dodecahedron.

Examples

			189.78985206688527910632308619447379699106033629736...
		

Crossrefs

Cf. A379888 (surface area), A379890 (inradius), A379891 (midradius), A379892 (dihedral angle).
Cf. A377805 (volume of a snub dodecahedron with unit edge length).
Cf. A001622.

Programs

  • Mathematica
    First[RealDigits[Root[3936256*#^12 - 143719449600*#^10 + 69717538560000*#^8 - 965464153000000*#^6 - 5195593956250000*#^4 - 6093827421875000*#^2 + 171855712890625 &, 8], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["PentagonalHexecontahedron", "Volume"], 10, 100]]

Formula

Equals 5*(1 + t)*(2 + 3*t)/((1 - 2*t^2)*sqrt(1 - 2*t)), where t = ((44 + 12*A001622*(9 + sqrt(81*A001622 - 15)))^(1/3) + (44 + 12*A001622*(9 - sqrt(81*A001622 - 15)))^(1/3) - 4)/12.
Equals the largest real root of 3936256*x^12 - 143719449600*x^10 + 69717538560000*x^8 - 965464153000000*x^6 - 5195593956250000*x^4 - 6093827421875000*x^2 + 171855712890625.