A379890 Decimal expansion of the inradius of a pentagonal hexecontahedron with unit shorter edge length.
3, 4, 9, 9, 5, 2, 7, 8, 4, 8, 9, 0, 5, 7, 6, 4, 0, 8, 2, 5, 7, 5, 3, 9, 3, 9, 0, 0, 3, 3, 7, 8, 9, 8, 2, 7, 8, 7, 7, 5, 8, 4, 9, 3, 6, 8, 9, 5, 0, 8, 8, 9, 3, 2, 5, 7, 3, 4, 2, 8, 9, 2, 2, 9, 7, 7, 1, 4, 6, 5, 2, 5, 8, 0, 6, 9, 1, 2, 6, 3, 1, 0, 8, 6, 3, 0, 3, 1, 9, 6
Offset: 1
Examples
3.49952784890576408257539390033789827877584936895...
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Pentagonal Hexecontahedron.
- Wikipedia, Pentagonal hexecontahedron.
- Index entries for algebraic numbers, degree 12.
Crossrefs
Programs
-
Mathematica
First[RealDigits[Root[856064*#^12 - 11107328*#^10 + 7691264*#^8 - 698816*#^6 + 8816*#^4 - 440*#^2 + 1 &, 8], 10, 100]] (* or *) First[RealDigits[PolyhedronData["PentagonalHexecontahedron", "Inradius"], 10, 100]]
Formula
Equals the largest real root of 856064*x^12 - 11107328*x^10 + 7691264*x^8 - 698816*x^6 + 8816*x^4 - 440*x^2 + 1.
Comments