A379891 Decimal expansion of the midradius of a pentagonal hexecontahedron with unit shorter edge length.
3, 5, 9, 7, 6, 2, 4, 8, 2, 2, 5, 5, 1, 1, 8, 9, 0, 1, 1, 4, 2, 8, 2, 5, 6, 5, 5, 9, 4, 4, 4, 4, 2, 3, 5, 3, 8, 4, 1, 1, 9, 6, 4, 5, 2, 2, 6, 6, 7, 7, 7, 1, 0, 1, 3, 4, 7, 6, 9, 9, 5, 5, 7, 8, 3, 0, 1, 6, 3, 6, 8, 7, 3, 2, 6, 0, 4, 5, 1, 3, 1, 6, 2, 5, 1, 7, 4, 2, 0, 6
Offset: 1
Examples
3.59762482255118901142825655944442353841196452...
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Pentagonal Hexecontahedron.
- Wikipedia, Pentagonal hexecontahedron.
Crossrefs
Programs
-
Mathematica
First[RealDigits[Root[4096*#^12 - 58368*#^10 + 70656*#^8 - 17728*#^6 + 1392*#^4 - 120*#^2 + 1 &, 8], 10, 100]] (* or *) First[RealDigits[PolyhedronData["PentagonalHexecontahedron", "Midradius"], 10, 100]]
Formula
Equals the largest real root of 4096*x^12 - 58368*x^10 + 70656*x^8 - 17728*x^6 + 1392*x^4 - 120*x^2 + 1.
Comments