cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379892 Decimal expansion of the dihedral angle, in radians, between any two adjacent faces in a pentagonal hexecontahedron.

This page as a plain text file.
%I A379892 #10 Feb 10 2025 08:42:30
%S A379892 2,6,7,3,4,7,3,2,2,7,1,7,6,7,8,4,6,6,8,2,7,9,0,7,0,3,3,4,8,9,5,7,9,1,
%T A379892 7,1,9,7,8,7,0,3,1,7,5,0,2,6,9,3,4,4,5,6,5,7,6,9,9,5,2,4,5,0,0,2,2,5,
%U A379892 5,7,4,0,0,5,4,0,2,1,6,0,5,9,9,6,7,4,7,4,7,5
%N A379892 Decimal expansion of the dihedral angle, in radians, between any two adjacent faces in a pentagonal hexecontahedron.
%C A379892 The pentagonal hexecontahedron is the dual polyhedron of the snub dodecahedron.
%H A379892 Paolo Xausa, <a href="/A379892/b379892.txt">Table of n, a(n) for n = 1..10000</a>
%H A379892 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PentagonalHexecontahedron.html">Pentagonal Hexecontahedron</a>.
%H A379892 Wikipedia, <a href="https://en.wikipedia.org/wiki/Pentagonal_hexecontahedron">Pentagonal hexecontahedron</a>.
%H A379892 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%F A379892 Equals arccos(A377849/(A377849 - 2)).
%F A379892 Equals arccos(c), where c is the smallest real root of 209*x^6 - 94*x^5 - 137*x^4 + 100*x^3 - 9*x^2 - 6*x + 1.
%e A379892 2.6734732271767846682790703348957917197870317502693...
%t A379892 First[RealDigits[ArcCos[#/(# - 2)] & [Root[#^3 + 2*#^2 - GoldenRatio^2 &, 1]], 10, 100]] (* or *)
%t A379892 First[RealDigits[First[PolyhedronData["PentagonalHexecontahedron", "DihedralAngles"]], 10, 100]]
%o A379892 (PARI) acos(polrootsreal(209*x^6 - 94*x^5 - 137*x^4 + 100*x^3 - 9*x^2 - 6*x + 1)[1]) \\ _Charles R Greathouse IV_, Feb 10 2025
%Y A379892 Cf. A379888 (surface area), A379889 (volume), A379890 (inradius), A379891 (midradius).
%Y A379892 Cf. A377997 and A377998 (dihedral angles of a snub dodecahedron).
%Y A379892 Cf. A377849.
%K A379892 nonn,cons,easy
%O A379892 1,1
%A A379892 _Paolo Xausa_, Jan 10 2025