This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379893 #34 Jan 15 2025 09:02:44 %S A379893 1,0,1,1,0,1,1,2,0,1,3,3,3,0,1,6,9,6,4,0,1,15,21,19,10,5,0,1,36,55,50, %T A379893 34,15,6,0,1,91,141,139,99,55,21,7,0,1,232,371,379,293,175,83,28,8,0, %U A379893 1,603,982,1043,847,551,286,119,36,9,0,1,1585,2628,2872,2441,1684,956,441,164,45,10,0,1 %N A379893 Triangle read by rows: T(n,k) is the number of standard Young tableaux with shapes in {lambda = (lambda_1,lambda_2,...) | lambda_1-lambda_2=k, lambda_i<=1 for i>=3, |lambda| = n}, n >= 0 and 0 <= k <= n. %H A379893 Xiaomei Chen, <a href="/A379893/b379893.txt">Table of n, a(n) for n = 0..860</a> %H A379893 Xiaomei Chen, <a href="https://arxiv.org/abs/2412.00668">Counting humps and peaks in Motzkin paths with height k</a>, arXiv:2412.00668 [math.CO], Dec 2024. %F A379893 T(n,k) = (-1)^(n+k) + Sum_{i=0..(n-k-1)/2} Sum_{j=0..n-k-1-2*i, j==n+k-1 (mod 2)} (2*k+2) / (n+k+1-2*i-j) * binomial(n-2*i-2,j) * binomial(n-2*i-j-1,(n+k-j-1)/2-i). %F A379893 T(n+1,2*k-1) + T(n,2*k-1) = A379838(n+1,k) - A379838(n,k). %e A379893 Triangle begins: %e A379893 [0] 1; %e A379893 [1] 0, 1; %e A379893 [2] 1, 0, 1; %e A379893 [3] 1, 2, 0, 1; %e A379893 [4] 3, 3, 3, 0, 1; %e A379893 [5] 6, 9, 6, 4, 0, 1; %e A379893 [6] 15, 21, 19, 10, 5, 0, 1; %e A379893 [7] 36, 55, 50, 34, 15, 6, 0, 1; %e A379893 [8] 91, 141, 139, 99, 55, 21, 7, 0, 1; %e A379893 ... %o A379893 (Sage) %o A379893 def A379893_triangel(dim): %o A379893 M = matrix(ZZ, dim, dim) %o A379893 for n in range(dim): %o A379893 for k in range(n+1): %o A379893 for i in range(math.floor((n-k-1)/2)+1): %o A379893 for j in range(n-k-1-2*i+1): %o A379893 if ((n+k-1-j)%2)==0: %o A379893 M[n,k]=M[n, k]+(2*k+2)/(n+k+1-2*i-j)*binomial(n-2*i-2,j)*binomial(n-2*i-j-1,(n+k-j-1)/2-i) %o A379893 M[n,k]=M[n,k]-pow(-1,n+k+1) %o A379893 return M %Y A379893 Row sums give A257520. %Y A379893 Column 1 gives A005043. %K A379893 nonn,tabl %O A379893 0,8 %A A379893 _Xiaomei Chen_, Jan 05 2025