cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379895 Number of 1 <= m <= N-1 such that there exists 1 <= x < y <= N-1 such that 1/x^2 - 1/y^2 = 1/m^2 - 1/N^2, N = A355812(n).

This page as a plain text file.
%I A379895 #18 Jan 07 2025 21:21:07
%S A379895 1,2,2,2,1,2,2,2,2,1,2,2,2,2,2,1,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,3,2,2,
%T A379895 1,2,2,2,4,1,2,4,2,2,3,2,2,2,2,2,2,4,3,2,2,4,2,1,2,2,6,2,2,4,2,2,1,2,
%U A379895 2,2,2,2,2,2,3,3,3,2,2,1,2,5,1,2,6,4,2,4,1,2,2,7
%N A379895 Number of 1 <= m <= N-1 such that there exists 1 <= x < y <= N-1 such that 1/x^2 - 1/y^2 = 1/m^2 - 1/N^2, N = A355812(n).
%C A379895 Different from A355813 at indices r such that A355812(r) is in A379983.
%C A379895 Let S(N) = {1/x^2 - 1/y^2 : 1 <= x < y <= N}, then N - 1 - a(n) is the size of |S(N) \ S(N-1)|, N = A355812(n). Note that S_N is the number of distinct energy differences within the first N energy levels of a hydrogen atom, and in particular |S(N)| < binomial(N,2) for N >= 35 since a(1) = 1.
%H A379895 Jianing Song, <a href="/A379895/b379895.txt">Table of n, a(n) for n = 1..307</a> (corresponding to A355812(n) <= 1500)
%e A379895 a(65) = 2 since there are 2 such m for N = A355812(65) = 385:
%e A379895 1/77^2 - 1/385^2 = 1/55^2 - 1/77^2 = 1/70^2 - 1/154^2;
%e A379895 1/154^2 - 1/385^2 = 1/70^2 - 1/77^2.
%e A379895 Note that A355813(65) = 3 because there are two solutions (x,y) corresponding to m = 77.
%e A379895 a(204) = 5 since there are 5 such m for N = A355812(204) = 1015:
%e A379895 1/140^2 - 1/1015^2 = 1/116^2 - 1/203^2;
%e A379895 1/203^2 - 1/1015^2 = 1/116^2 - 1/140^2 = 1/145^2 - 1/203^2;
%e A379895 1/609^2 - 1/1015^2 = 1/525^2 - 1/725^2;
%e A379895 1/700^2 - 1/1015^2 = 1/580^2 - 1/725^2;
%e A379895 1/725^2 - 1/1015^2 = 1/525^2 - 1/609^2 = 1/580^2 - 1/700^2.
%e A379895 Note that A355813(204) = 7 because there are two solutions (x,y) corresponding to m = 203 and to m = 725.
%o A379895 (PARI) b(n) = my(v=[], m2); for(y=1, n-1, for(x=1, y-1, m2=1/(1/x^2-1/y^2+1/n^2); if(m2==m2\1 && issquare(m2), v=concat(v, [m2])))); #Set(v) \\ #v gives A355813
%o A379895 for(n=1, 1500, if(b(n)>0, print1(b(n), ", ")))
%Y A379895 Cf. A355812, A355813, A379983.
%Y A379895 Partial sums give A379979.
%K A379895 nonn
%O A379895 1,2
%A A379895 _Jianing Song_, Jan 05 2025