This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379898 #7 Jan 07 2025 10:09:48 %S A379898 6,24,38,42,62,96,98,146,152,162,168,171,248,384,392,584,608,648,672, %T A379898 684,992,1026,1134,1202,1506,1536,1568,1674,2336,2432,2592,2646,2688, %U A379898 2736,3942,3968,4104,4214,4374,4536,4575,4617,4808,6024,6144,6272,6696,9344,9728 %N A379898 Integers k equal to the sum over A003415(t) mod t, for some steps, starting with t = k and then using the result to feed the next calculation. %C A379898 Up to 10^7, the longest process takes place with 35966, 143864, 575456, 971082, 2301824, 3884328 and 9207296 which need 8 steps. %e A379898 k = 146 (3 steps): %e A379898 146' mod 146 = 75; %e A379898 75' mod 75 = 55; %e A379898 55' mod 55 = 16 and 75 + 55 + 16 = 146. %e A379898 k = 248 (4 steps): %e A379898 248' mod 248 = 132; %e A379898 132' mod 132 = 56; %e A379898 56' mod 56 = 36; %e A379898 36' mod 36 = 24 and 132 + 56 + 36 + 24 = 248. %p A379898 with(numtheory): P:=proc(q) local a, b, n, v; v:=[]; for n from 1 to q do %p A379898 a:=0; b:=n; while a<n do b:=(b*add(op(2,p)/op(1,p),p=ifactors(b)[2]) mod b); %p A379898 if b=0 then break; else a:=a+b; fi; od; if a=n then v:=[op(v), n]; fi; od; op(v); end: P(10^4); %Y A379898 Cf. A003415, A377001, A377002. %K A379898 nonn,easy %O A379898 1,1 %A A379898 _Paolo P. Lava_, Jan 05 2025