A379907 Triangle read by rows: T(n, k) = Sum_{i=0..n-k} (-1)^(n - k - i) * binomial(n - k, i) * binomial(k + 2*i, i) * (k + 1) / (k + 1 + i).
1, 0, 1, 1, 1, 1, 1, 2, 2, 1, 3, 4, 4, 3, 1, 6, 9, 9, 7, 4, 1, 15, 21, 21, 17, 11, 5, 1, 36, 51, 51, 42, 29, 16, 6, 1, 91, 127, 127, 106, 76, 46, 22, 7, 1, 232, 323, 323, 272, 200, 128, 69, 29, 8, 1, 603, 835, 835, 708, 530, 352, 204, 99, 37, 9, 1, 1585, 2188, 2188, 1865, 1415, 965, 587, 311, 137, 46, 10, 1
Offset: 0
Examples
Triangle T(n, k) for 0 <= k <= n starts: n \k : 0 1 2 3 4 5 6 7 8 9 10 11 ==================================================================== 0 : 1 1 : 0 1 2 : 1 1 1 3 : 1 2 2 1 4 : 3 4 4 3 1 5 : 6 9 9 7 4 1 6 : 15 21 21 17 11 5 1 7 : 36 51 51 42 29 16 6 1 8 : 91 127 127 106 76 46 22 7 1 9 : 232 323 323 272 200 128 69 29 8 1 10 : 603 835 835 708 530 352 204 99 37 9 1 11 : 1585 2188 2188 1865 1415 965 587 311 137 46 10 1 etc.
Crossrefs
Programs
-
Maple
gf := 2/(sqrt((1-3*t)*(t+1)) - 2*(t+1)*t*x + t+1): ser := simplify(series(gf,t,12)): ct := n -> coeff(ser,t,n): row := n -> local k; seq(coeff(ct(n), x, k), k = 0..n): seq(row(n), n = 0..11); # Peter Luschny, Jan 05 2025
-
PARI
T(n,k) = sum(i=0,n-k,(-1)^(n-k-i)*binomial(n-k,i)*binomial(k+2*i,i)*(k+1)/(k+1+i))
-
PARI
T(n,k)=polcoef(polcoef(2/(sqrt((1-3*t)*(1+t))+(1+t)*(1-2*x*t))+x*O(x^k),k,x)+t*O(t^n),n,t); m=matrix(15,15,n,k,if(k>n,0,T(n-1,k-1)))
Formula
Riordan array (C(t/(1+t)) / (1+t), t * C(t/(1+t))) where C(x) is g.f. of A000108.
Riordan array ((1 + t - sqrt(1 - 2*t - 3*t^2))/(2*t*(1 + t)), (1 + t - sqrt(1-2*t-3*t^2))/2).
G.f.: 2/(sqrt((1 - 3*t)*(t + 1)) - 2*(t + 1)*t*x + t + 1).
Conjecture: T(n, k) = T(n, k-1) + T(n-1, k-1) - T(n-1, k-2) - T(n-2, k-2) for 2 <= k <= n.
T(n, k) = (-1)^(k-n)*hypergeom([k-n, k/2+1, (k+1)/2], [1, k + 2], 4). - Peter Luschny, Jan 06 2025
Comments