cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379907 Triangle read by rows: T(n, k) = Sum_{i=0..n-k} (-1)^(n - k - i) * binomial(n - k, i) * binomial(k + 2*i, i) * (k + 1) / (k + 1 + i).

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 1, 2, 2, 1, 3, 4, 4, 3, 1, 6, 9, 9, 7, 4, 1, 15, 21, 21, 17, 11, 5, 1, 36, 51, 51, 42, 29, 16, 6, 1, 91, 127, 127, 106, 76, 46, 22, 7, 1, 232, 323, 323, 272, 200, 128, 69, 29, 8, 1, 603, 835, 835, 708, 530, 352, 204, 99, 37, 9, 1, 1585, 2188, 2188, 1865, 1415, 965, 587, 311, 137, 46, 10, 1
Offset: 0

Views

Author

Werner Schulte, Jan 05 2025

Keywords

Comments

Conjecture: Let A = (g(t), f(t)) and B = (u(t), v(t)) be (triangular) Riordan arrays with A(n, k) = [t^n](g(t)*(f(t))^k) and B(n, k) = [t^n](u(t)*(v(t))^k). Then T = (g(t)*u(f(t)), v(f(t))*t/f(t)) is the Riordan array with T(n, k) = [t^n](g(t)*u(f(t))*(v(f(t))*t/f(t))^k) = Sum_{i=0..n-k} A(n-k, i) * B(k+i, k) for 0 <= k <= n.

Examples

			Triangle T(n, k) for 0 <= k <= n starts:
n \k :     0     1     2     3     4    5    6    7    8   9  10  11
====================================================================
   0 :     1
   1 :     0     1
   2 :     1     1     1
   3 :     1     2     2     1
   4 :     3     4     4     3     1
   5 :     6     9     9     7     4    1
   6 :    15    21    21    17    11    5    1
   7 :    36    51    51    42    29   16    6    1
   8 :    91   127   127   106    76   46   22    7    1
   9 :   232   323   323   272   200  128   69   29    8   1
  10 :   603   835   835   708   530  352  204   99   37   9   1
  11 :  1585  2188  2188  1865  1415  965  587  311  137  46  10   1
  etc.
		

Crossrefs

Cf. A005043 (column 0), A001006 (column 1 and 2), A102071 (column 3).
Cf. A000108, A342912 (row sums), A379824 (alternating row sums), A379823 (central terms).

Programs

  • Maple
    gf := 2/(sqrt((1-3*t)*(t+1)) - 2*(t+1)*t*x + t+1): ser := simplify(series(gf,t,12)):
    ct := n -> coeff(ser,t,n): row := n -> local k; seq(coeff(ct(n), x, k), k = 0..n):
    seq(row(n), n = 0..11);  # Peter Luschny, Jan 05 2025
  • PARI
    T(n,k) = sum(i=0,n-k,(-1)^(n-k-i)*binomial(n-k,i)*binomial(k+2*i,i)*(k+1)/(k+1+i))
    
  • PARI
    T(n,k)=polcoef(polcoef(2/(sqrt((1-3*t)*(1+t))+(1+t)*(1-2*x*t))+x*O(x^k),k,x)+t*O(t^n),n,t);
           m=matrix(15,15,n,k,if(k>n,0,T(n-1,k-1)))

Formula

Riordan array (C(t/(1+t)) / (1+t), t * C(t/(1+t))) where C(x) is g.f. of A000108.
Riordan array ((1 + t - sqrt(1 - 2*t - 3*t^2))/(2*t*(1 + t)), (1 + t - sqrt(1-2*t-3*t^2))/2).
G.f.: 2/(sqrt((1 - 3*t)*(t + 1)) - 2*(t + 1)*t*x + t + 1).
Conjecture: T(n, k) = T(n, k-1) + T(n-1, k-1) - T(n-1, k-2) - T(n-2, k-2) for 2 <= k <= n.
T(n, k) = (-1)^(k-n)*hypergeom([k-n, k/2+1, (k+1)/2], [1, k + 2], 4). - Peter Luschny, Jan 06 2025