cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379940 E.g.f. A(x) satisfies A(x) = 1/( exp(-x*A(x)^(2/3)) - x*A(x)^(1/3) )^3.

This page as a plain text file.
%I A379940 #9 Jan 07 2025 08:21:32
%S A379940 1,6,81,1788,55785,2267298,114015825,6848257272,478929874257,
%T A379940 38253577287870,3437561332041969,343381977748134900,
%U A379940 37755068758105209849,4531920849132497127258,589779214651388664049905,82722149483353129407482352,12440903535778778244423710625,1997259670949248788135594940278
%N A379940 E.g.f. A(x) satisfies A(x) = 1/( exp(-x*A(x)^(2/3)) - x*A(x)^(1/3) )^3.
%F A379940 E.g.f.: B(x)^3, where B(x) is the e.g.f. of A377892.
%F A379940 a(n) = 3 * n! * Sum_{k=0..n} (2*n+3)^(k-1) * binomial(2*n+3,n-k)/k!.
%F A379940 a(n) == 0 (mod 3) for n>0.
%o A379940 (PARI) a(n) = 3*n!*sum(k=0, n, (2*n+3)^(k-1)*binomial(2*n+3, n-k)/k!);
%Y A379940 Cf. A377892, A379936.
%K A379940 nonn
%O A379940 0,2
%A A379940 _Seiichi Manyama_, Jan 07 2025