This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379945 #14 Jan 09 2025 19:18:50 %S A379945 2,1,3,1,8,8,4,5,1,3,2,9,18,7,1,24,24,24,12,9,9,3,15,30,15,30,11,1,15, %T A379945 30,5,12,30,20,13,1,21,42,21,42,5,45,15,45,64,64,64,64,32,17,1,30,3, %U A379945 30,5,90,45,19,1,50,25,100,50,5,100,63,63,63,63,33,66,33,66,23,1 %N A379945 Irregular triangle read by rows: T(n, k) is the numerator of the harmonic mean of all positive divisors of n except the k-th of them. %H A379945 Stefano Spezia, <a href="/A379945/b379945.txt">Table of n, a(n) for n = 2..10371</a> (first 1400 rows of the triangle) %H A379945 Jaba Kalita and Helen K. Saikia, <a href="https://pjm.ppu.edu/paper/1884-note-near-harmonic-divisor-number-and-associated-concepts">A note on near harmonic divisor number and associated concepts</a>, Palestine Journal of Mathematics, Vol. 13(4), 2024. %F A379945 T(n, k) = numerator(n*(tau(n) - 1)/(sigma(n) - n/A027750(n, k))). %e A379945 The irregular triangle begins as: %e A379945 2, 1; %e A379945 3, 1; %e A379945 8, 8, 4; %e A379945 5, 1; %e A379945 3, 2, 9, 18; %e A379945 7, 1; %e A379945 24, 24, 24, 12; %e A379945 9, 9, 3; %e A379945 15, 30, 15, 30; %e A379945 ... %e A379945 The irregular triangle of the related fractions begins as: %e A379945 2, 1; %e A379945 3, 1; %e A379945 8/3, 8/5, 4/3; %e A379945 5, 1; %e A379945 3, 2, 9/5, 18/11; %e A379945 7,1; %e A379945 24/7, 24/11, 24/13, 12/7; %e A379945 9/2, 9/5, 3/2; %e A379945 15/4, 30/13, 15/8, 30/17; %e A379945 ... %t A379945 T[n_,k_]:=Numerator[n(DivisorSigma[0,n]-1)/(DivisorSigma[1,n]-n/Part[Divisors[n],k])]; Table[T[n,k],{n,2,23},{k,DivisorSigma[0,n]}]//Flatten %Y A379945 Cf. A000005, A000203, A001599, A027750, A099377, A379946 (denominator). %K A379945 nonn,frac,tabf %O A379945 2,1 %A A379945 _Stefano Spezia_, Jan 07 2025