This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379946 #13 Jan 09 2025 19:18:59 %S A379946 1,1,1,1,3,5,3,1,1,1,1,5,11,1,1,7,11,13,7,2,5,2,4,13,8,17,1,1,4,11,2, %T A379946 5,13,9,1,1,5,17,11,23,1,19,7,23,15,23,27,29,15,1,1,7,1,11,2,37,19,1, %U A379946 1,11,8,37,19,2,41,11,25,29,31,7,25,17,35,1,1,3,2,13,9,1,19,29,59 %N A379946 Irregular triangle read by rows: T(n, k) is the denominator of the harmonic mean of all positive divisors of n except the k-th of them. %H A379946 Stefano Spezia, <a href="/A379946/b379946.txt">Table of n, a(n) for n = 2..10371</a> (first 1400 rows of the triangle) %H A379946 Jaba Kalita and Helen K. Saikia, <a href="https://pjm.ppu.edu/paper/1884-note-near-harmonic-divisor-number-and-associated-concepts">A note on near harmonic divisor number and associated concepts</a>, Palestine Journal of Mathematics, Vol. 13(4), 2024. %F A379946 T(n, k) = denominator(n*(tau(n) - 1)/(sigma(n) - n/A027750(n, k))). %e A379946 The irregular triangle begins as: %e A379946 1, 1; %e A379946 1, 1; %e A379946 3, 5, 3; %e A379946 1, 1; %e A379946 1, 1, 5, 11; %e A379946 1, 1; %e A379946 7, 11, 13, 7; %e A379946 2, 5, 2; %e A379946 4, 13, 8, 17; %e A379946 ... %e A379946 The irregular triangle of the related fractions begins as: %e A379946 2, 1; %e A379946 3, 1; %e A379946 8/3, 8/5, 4/3; %e A379946 5, 1; %e A379946 3, 2, 9/5, 18/11; %e A379946 7,1; %e A379946 24/7, 24/11, 24/13, 12/7; %e A379946 9/2, 9/5, 3/2; %e A379946 15/4, 30/13, 15/8, 30/17; %e A379946 ... %t A379946 T[n_,k_]:=Denominator[n(DivisorSigma[0,n]-1)/(DivisorSigma[1,n]-n/Part[Divisors[n],k])]; Table[T[n,k],{n,2,24},{k,DivisorSigma[0,n]}]//Flatten %Y A379946 Cf. A000005, A000203, A001599, A027750, A099378, A379945 (numerator). %K A379946 nonn,frac,tabf %O A379946 2,5 %A A379946 _Stefano Spezia_, Jan 07 2025