cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379960 Numbers k such that A276086(k)-1 or A276086(k)+1 is a perfect power (A001597), where A276086 is the primorial base exp-function.

This page as a plain text file.
%I A379960 #17 Jan 24 2025 11:59:21
%S A379960 1,2,4,6,7,8,13,30,34,35,36,212,214,248,254,421,2311,2316,2318,2322,
%T A379960 2329,2350,2520,2550,2564,2776,4654,5076,9241,30030,30037,30038,30092,
%U A379960 30120,30480,32341,32347,32374,34662,60066,510515,510542,510547,510728,510746,512850,512886,515134,540540,540818,542862,542888,1021442
%N A379960 Numbers k such that A276086(k)-1 or A276086(k)+1 is a perfect power (A001597), where A276086 is the primorial base exp-function.
%C A379960 Most terms seem to cluster after the primorials, A002110. (Compare also to the growth rate of A001597).
%H A379960 Antti Karttunen, <a href="/A379960/b379960.txt">Table of n, a(n) for n = 1..122</a>
%H A379960 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>
%e A379960 See examples in A379961 and A379962.
%o A379960 (PARI)
%o A379960 A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
%o A379960 is_A379960(n) = { my(x=A276086(n)); (1==(x-1) || ispower(x+1) || ispower(x-1)); };
%Y A379960 Cf. A001597, A002110, A276086.
%Y A379960 Union of A379961 and A379962.
%Y A379960 Cf. also A379963.
%K A379960 nonn
%O A379960 1,2
%A A379960 _Antti Karttunen_, Jan 22 2025