cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379962 Numbers k such that A276086(k)+1 is a perfect power (A001597), where A276086 is the primorial base exp-function.

This page as a plain text file.
%I A379962 #10 Jan 24 2025 11:59:31
%S A379962 2,8,30,34,36,214,248,254,421,2311,2318,2350,2520,2564,2776,4654,5076,
%T A379962 30038,30092,30120,30480,32374,510515,510542,510547,510728,510746,
%U A379962 512886,515134,540540,540818,542862,542888,1021442,9699702,9699722,9699772,9699788,9702010,9702256,9729938,9734358,10210414,10217558,10240472,10240724
%N A379962 Numbers k such that A276086(k)+1 is a perfect power (A001597), where A276086 is the primorial base exp-function.
%H A379962 Antti Karttunen, <a href="/A379962/b379962.txt">Table of n, a(n) for n = 1..93</a>
%H A379962 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>.
%e A379962 A276086(30) = 7, +1 = 8 = 2^3, therefore 30 is included.
%e A379962 A276086(2311) = 26, +1 = 27 = 3^3, therefore 2311 is included.
%o A379962 (PARI)
%o A379962 A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
%o A379962 is_A379962(n) = ispower(1+A276086(n));
%Y A379962 Setwise difference A379960 \ A379961.
%Y A379962 Cf. A001597, A276086, A379963 (subsequence).
%K A379962 nonn
%O A379962 1,1
%A A379962 _Antti Karttunen_, Jan 24 2025