cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379976 Absolute value of the minimum coefficient of (1 - x^2) * (1 - x^3) * (1 - x^5) * ... * (1 - x^prime(n)).

This page as a plain text file.
%I A379976 #12 Feb 07 2025 16:48:08
%S A379976 1,1,1,1,1,1,1,1,1,1,1,2,3,3,4,6,8,12,18,30,46,70,113,186,314,531,894,
%T A379976 1561,2705,4817,8502,15030,26502,47200,84698,151809,273961,496807,
%U A379976 900596,1643185,2999067,5498916,10110030,18596096,34300223,63585519,118208807,219235308,405259618,752027569,1400505025
%N A379976 Absolute value of the minimum coefficient of (1 - x^2) * (1 - x^3) * (1 - x^5) * ... * (1 - x^prime(n)).
%H A379976 Robert Israel, <a href="/A379976/b379976.txt">Table of n, a(n) for n = 0..1500</a>
%p A379976 P:= 1: R:= 1:
%p A379976 for i from 1 to 100 do
%p A379976   P:= P * (1 - x^ithprime(i));
%p A379976   R:= R, abs(min(coeffs(expand(P),x)))
%p A379976 od:
%p A379976 R; # _Robert Israel_, Feb 07 2025
%t A379976 Table[Min[CoefficientList[Product[(1 - x^Prime[k]), {k, 1, n}], x]], {n, 0, 50}] // Abs
%o A379976 (PARI) a(n) = abs(vecmin(Vec(prod(k=1, n, 1-x^prime(k))))); \\ _Michel Marcus_, Jan 18 2025
%Y A379976 Cf. A046675, A086394, A350457, A350514, A367843.
%K A379976 nonn
%O A379976 0,12
%A A379976 _Ilya Gutkovskiy_, Jan 07 2025