A379981 Non-Niven (or non-Harshad) numbers that are divisible by the square of the sum of the squares of their digits.
52022, 71824, 110201, 120472, 131072, 188180, 202312, 244634, 298374, 320305, 327184, 340000, 430000, 502150, 506056, 519168, 520220, 652118, 667815, 680000, 680625, 718240, 765625, 860000, 933156, 1001021, 1001047, 1003313, 1010113, 1035125, 1050232, 1215200
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Pradip Kumar Pal and Kaushik Gopalan, Second Order Harshad Number, International Journal of Mathematical Education, Vol. 13, No. 1 (2023), pp. 25-26.
Programs
-
Mathematica
Select[Range[1.3*10^6], ! Divisible[#, Plus @@ IntegerDigits[#]] && Divisible[#, (Plus @@ (IntegerDigits[#]^2))^2] &]
-
PARI
isok(k) = k % sumdigits(k) && !(k % vecsum(apply(x->x^2, digits(k)))^2);
-
Python
def ok(n): d = list(map(int, str(n))) return n and n%sum(d) and n%sum(di**2 for di in d)**2 == 0 print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Jan 10 2025
Formula
52022 is a term since 52022 is divisible by (5^2 + 2^2 + 0^2 + 2^2 + 2^2)^2 = 1369, but it is not divisible by 5 + 2 + 0 + 2 + 2 = 11.