A380002 Decimal expansion of long/short edge length ratio of a pentagonal hexecontahedron.
1, 7, 4, 9, 8, 5, 2, 5, 6, 6, 7, 3, 6, 2, 0, 2, 7, 9, 1, 6, 7, 6, 4, 4, 6, 6, 9, 3, 6, 5, 5, 9, 2, 1, 1, 7, 9, 6, 4, 9, 8, 1, 5, 8, 1, 8, 5, 9, 0, 3, 7, 6, 0, 0, 4, 3, 8, 7, 8, 6, 1, 2, 6, 9, 7, 0, 3, 9, 8, 2, 5, 2, 6, 6, 0, 8, 4, 0, 1, 4, 5, 1, 4, 1, 4, 9, 0, 4, 5, 7
Offset: 1
Examples
1.749852566736202791676446693655921179649815818590...
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Pentagonal Hexecontahedron.
- Wikipedia, Pentagonal hexecontahedron.
Crossrefs
Programs
-
Mathematica
First[RealDigits[(1 + #)/(2 - #^2) & [Root[#^3 + 2*#^2 - GoldenRatio^2 &, 1]], 10, 100]] (* or *) First[RealDigits[1/Divide @@ PolyhedronData["PentagonalHexecontahedron", "EdgeLengths"], 10, 100]]
Formula
Equals (1 + xi)/(2 - xi^2), where xi = A377849.
Equals the largest real root of 31*x^6 - 122*x^5 + 177*x^4 - 128*x^3 + 51*x^2 - 11*x + 1.