cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A380002 Decimal expansion of long/short edge length ratio of a pentagonal hexecontahedron.

Original entry on oeis.org

1, 7, 4, 9, 8, 5, 2, 5, 6, 6, 7, 3, 6, 2, 0, 2, 7, 9, 1, 6, 7, 6, 4, 4, 6, 6, 9, 3, 6, 5, 5, 9, 2, 1, 1, 7, 9, 6, 4, 9, 8, 1, 5, 8, 1, 8, 5, 9, 0, 3, 7, 6, 0, 0, 4, 3, 8, 7, 8, 6, 1, 2, 6, 9, 7, 0, 3, 9, 8, 2, 5, 2, 6, 6, 0, 8, 4, 0, 1, 4, 5, 1, 4, 1, 4, 9, 0, 4, 5, 7
Offset: 1

Views

Author

Paolo Xausa, Jan 11 2025

Keywords

Examples

			1.749852566736202791676446693655921179649815818590...
		

Crossrefs

Cf. A379888 (surface area), A379889 (volume), A379890 (inradius), A379890 (midradius), A379892 (dihedral angle), A380003 and A380004 (face internal angles).
Cf. A377849.

Programs

  • Mathematica
    First[RealDigits[(1 + #)/(2 - #^2) & [Root[#^3 + 2*#^2 - GoldenRatio^2 &, 1]], 10, 100]] (* or *)
    First[RealDigits[1/Divide @@ PolyhedronData["PentagonalHexecontahedron", "EdgeLengths"], 10, 100]]

Formula

Equals (1 + xi)/(2 - xi^2), where xi = A377849.
Equals the largest real root of 31*x^6 - 122*x^5 + 177*x^4 - 128*x^3 + 51*x^2 - 11*x + 1.

A380003 Decimal expansion of acute vertex angle, in radians, in a pentagonal hexecontahedron face.

Original entry on oeis.org

1, 1, 7, 7, 2, 8, 5, 8, 2, 3, 4, 7, 1, 7, 5, 0, 2, 9, 1, 9, 2, 3, 5, 3, 7, 4, 4, 5, 4, 8, 1, 2, 4, 4, 6, 8, 0, 9, 0, 7, 3, 0, 5, 4, 3, 4, 5, 9, 8, 1, 2, 4, 8, 7, 4, 3, 0, 8, 9, 3, 3, 3, 8, 2, 9, 2, 3, 3, 2, 2, 9, 9, 7, 6, 3, 0, 9, 5, 9, 8, 0, 6, 4, 5, 2, 5, 2, 9, 6, 1
Offset: 1

Views

Author

Paolo Xausa, Jan 12 2025

Keywords

Comments

A pentagonal hexecontahedron face is an irregular pentagon with one acute angle (this constant) and four (equal) obtuse angles (A380004).

Examples

			1.1772858234717502919235374454812446809073054345981...
		

Crossrefs

Cf. A379888 (surface area), A379889 (volume), A379890 (inradius), A379890 (midradius), A379892 (dihedral angle), A380002 (long/short edge length ratio), A380004 (face obtuse angles).

Programs

  • Mathematica
    First[RealDigits[ArcCos[Root[64*#^6 - 384*#^5 + 384*#^4 + 888*#^3 + 168*#^2 - 128*# - 31 &, 4]], 10, 100]]

Formula

Equals arccos(c), where c is the largest real root of 64*x^6 - 384*x^5 + 384*x^4 + 888*x^3 + 168*x^2 - 128*x - 31.
Equals 3*Pi - 4*A380004.
Showing 1-2 of 2 results.