This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380026 #26 Jan 21 2025 15:10:24 %S A380026 2,3,5,7,13,19,229,439,2749,5059,7369,9679,39709,42019,6469735249, %T A380026 5766152219975951659023630035336134306565384015606066326325804059, %U A380026 5766152219975951659023630035336134306565384015606073747063938869,5766152219975951659023630035336134306565384015606073747287031739 %N A380026 a(n) is the smallest prime p such that p - a(n-1) is a primorial, starting with a(1)=2. %F A380026 a(n) = a(n-1) + A002110(A100380(A000720(a(n-1)))), for n > 1. - _Michael S. Branicky_, Jan 10 2025 %e A380026 a(4) = 7 %e A380026 For primes greater than 7: %e A380026 11 - 7 = 4 is not in A002110 %e A380026 13 - 7 = 6 is in A002110 so a(5) = 13 %o A380026 (Python) %o A380026 from itertools import count, islice %o A380026 from sympy import isprime, primorial %o A380026 def A002110(n): return primorial(n) if n > 0 else 1 %o A380026 def agen(an=2): # generator of terms %o A380026 while True: %o A380026 yield an %o A380026 an = next(s for k in count(0) if isprime(s:=an+A002110(k))) %o A380026 print(list(islice(agen(), 18))) # _Michael S. Branicky_, Jan 10 2025 %o A380026 (Python) %o A380026 from sympy import isprime %o A380026 import primesieve %o A380026 it = primesieve.Iterator() %o A380026 chain = [2] %o A380026 pchain = [] %o A380026 n = 1 %o A380026 while len(chain) < 18: %o A380026 while True: %o A380026 p = it.next_prime() %o A380026 if isprime(chain[-1]+n): %o A380026 chain.append(chain[-1]+n) %o A380026 print(len(chain)) %o A380026 break %o A380026 n *= p %o A380026 p = it.skipto(0) %o A380026 n = 1 %o A380026 print(chain) # _Hayden Chesnut_, Jan 10 2025 %Y A380026 Cf. A000720, A002110, A100380, A380027. %K A380026 nonn %O A380026 1,1 %A A380026 _Hayden Chesnut_, Jan 09 2025