This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380027 #40 Feb 08 2025 14:09:38 %S A380027 2,3,5,11,41,9699731 %N A380027 a(n) is the largest prime p such that p - a(n-1) is a primorial, starting with a(1) = 2. %C A380027 From _Michael S. Branicky_, Jan 11 2025: (Start) %C A380027 The corresponding k are such that 0 <= k < PrimePi(P), so a(n-1)+1 <= a(n) <= a(n-1)+primorial(PrimePi(a(n-1))-1). %C A380027 a(7) >= 9699731 + primorial(452), which is prime and has 1351 digits, so it is too large to include, even in a b-file. (End) %F A380027 a(n) = a(n-1) + A002110(A265109(A000720(a(n-1)))), for n > 1. - _Michael S. Branicky_, Jan 10 2025 %e A380027 a(3) = 5 %e A380027 For primes less than 5+5#: %e A380027 31 - 5 = 26 is not in A002110 %e A380027 ... %e A380027 13 - 5 = 8 is not in A002110 %e A380027 11 - 5 = 6 is in A002110 so a(4) = 11 %o A380027 (Python) %o A380027 from itertools import count, islice %o A380027 from sympy import isprime, primepi, primorial %o A380027 def A002110(n): return primorial(n) if n > 0 else 1 %o A380027 def agen(an=2): # generator of terms %o A380027 while True: %o A380027 yield an %o A380027 an = next(s for k in range(primepi(an)-1, -1, -1) if isprime(s:=an+A002110(k))) %o A380027 print(list(islice(agen(), 6))) # _Michael S. Branicky_, Jan 11 2025 %Y A380027 Cf. A002110, A265109, A380026. %K A380027 nonn %O A380027 1,1 %A A380027 _Hayden Chesnut_, Jan 09 2025