This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380032 #6 Jan 15 2025 08:43:12 %S A380032 1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,1,1,2,1,1,2,1,1,1,1,2,1,1,2,1,2,2,1,1, %T A380032 1,1,1,1,1,1,1,3,1,1,1,1,1,1,2,2,1,1,1,1,1,2,3,1,1,1,3,2,1,2,1,1,2,1, %U A380032 2,1,2,2,1,1,1,1,2,1,1,1,1,1,3,1,1,1,1 %N A380032 Number of pairs (d, k/d), d | k, d < k/d, such that gcd(d, k/d) > 1 and d | k/d but rad(k/d) does not divide d, where k is in A126706. %C A380032 Number of ways to write k = A126706(n) as a product of noncoprime numbers i and j, i < j, where i | j, but rad(j) does not divide i. This is to say that j has a factor that does not divide i, hence omega(i) < omega(j) = omega(k). %C A380032 Divisor d may be prime, but k/d is composite. %H A380032 Michael De Vlieger, <a href="/A380032/b380032.txt">Table of n, a(n) for n = 1..10000</a> %e A380032 Let s(n) = A126706(n). %e A380032 a(1) = 1 since s(1) = 12 = 2*6. %e A380032 a(2) = 1 since s(2) = 18 = 3*6. %e A380032 a(3) = 1 since s(3) = 20 = 2*10. %e A380032 a(4) = 1 since s(4) = 24 = 2*12. %e A380032 a(6) = 2 since s(6) = 36 = 2*18 = 3*12. %e A380032 a(42) = 3 since s(42) = 144 = 2*72 = 3*48 = 4*36. %e A380032 a(204) = 4 since s(204) = 576 = 2*288 = 3*192 = 4*144 = 8*72. %e A380032 a(257) = 5 since s(257) = 720 = 2*360 = 3*240 = 4*180 = 6*120 = 12*60, etc. %t A380032 nn = 120; %t A380032 rad[x_] := Times @@ FactorInteger[x][[All, 1]]; %t A380032 s = Select[Range[nn], Nor[PrimePowerQ[#], SquareFreeQ[#]] &]; %t A380032 Table[k = s[[n]]; %t A380032 Count[Transpose@ {#, k/#} &@ #[[2 ;; Ceiling[Length[#]/2] ]] &@ Divisors[k], %t A380032 _?( (m = GCD @@ {##}; %t A380032 And[! MemberQ[{1, #2}, m], %t A380032 m == #1, %t A380032 ! Divisible[#1, rad[#2]] ] ) & @@ # &)], {n, Length[s]}] %Y A380032 Cf. A001221, A025487, A126706. %K A380032 nonn %O A380032 1,6 %A A380032 _Michael De Vlieger_, Jan 11 2025