A380033 Numbers that set records in A380032.
12, 36, 144, 576, 720, 900, 2880, 3600, 14400, 32400, 44100, 57600, 129600, 176400, 705600, 1587600, 2822400, 6350400, 11289600, 21344400, 25401600, 57153600, 85377600, 101606400, 192099600, 341510400, 768398400, 1366041600, 3073593600, 6915585600, 12294374400
Offset: 1
Keywords
Examples
Let b(n) = A380032(n). Table showing exponents of prime power factors of a(n) for n = 1..12. Example: a(5) = 2880 = 2^6 * 3^2 * 5, hence we write "6.2.1". n a(n) Exp. b(a(n)) -------------------------- 1 12 2.1 1 2*6 2 36 2.2 2 2*18 = 3*12 3 144 4.2 3 2*72 = 3*48 = 4*36 4 576 6.2 4 2*288 = 3*192 = 4*144 = 8*72 5 720 4.2.1 5 2*360 = 3*240 = 4*180 = 6*120 = 12*60 6 900 2.2.2 6 7 2880 6.2.1 7 8 3600 4.2.2 9 9 14400 6.2.2 12 10 32400 4.4.2 13 11 44100 2.2.2.2 14 12 57600 8.2.2 15
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..66
- Michael De Vlieger, Prime power decomposition of a(n) n = 1..66, also including n = 67..141 (asterisked) that would follow if Conjecture 1 is true.
- Michael De Vlieger, List of (d, k/d), d < k/d, k = a(n), n = 1..24, d | k, d < k/d, such that gcd(d, k/d) > 1 and d | k/d but rad(k/d) does not divide d.
Programs
-
Mathematica
(* Load function f at A025487 *) r = 0; s = Select[Union@ Flatten@ f[8][[3 ;; -1]], Not @* SquareFreeQ]; nn = Length[s]; Print[nn]; Reap[Monitor[ Do[k = s[[i]]; If[# > r, r = #; Sow[k]] &@ Count[Transpose@ {#, k/#} &@ #[[2 ;; Ceiling[Length[#]/2]]] &@ Divisors[k], _?((m = GCD @@ {##}; And[! MemberQ[{1, #2}, m], m == #1, ! Divisible[#1, rad[#2]]]) & @@ # &)], {i, nn}], i] ][[-1, 1]]
Comments