cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380033 Numbers that set records in A380032.

Original entry on oeis.org

12, 36, 144, 576, 720, 900, 2880, 3600, 14400, 32400, 44100, 57600, 129600, 176400, 705600, 1587600, 2822400, 6350400, 11289600, 21344400, 25401600, 57153600, 85377600, 101606400, 192099600, 341510400, 768398400, 1366041600, 3073593600, 6915585600, 12294374400
Offset: 1

Views

Author

Michael De Vlieger, Jan 11 2025

Keywords

Comments

Proper subset of A364710 (intersection of A025487 and A126706).
Conjecture 1: Almost all numbers in this sequence are powerful squares. Only 12, 720, and 2880 are not powerful. Thereby this sequence is a proper subset of A368682 (intersection of A025487 and A131605, the latter a subset of A001597 and A286708), in turn a subset of A364710.
Conjecture 2: 36, 900, and 44100 are the only squares of primorials (in A061742) in the sequence.

Examples

			Let b(n) = A380032(n).
Table showing exponents of prime power factors of a(n) for n = 1..12.
Example: a(5) = 2880 = 2^6 * 3^2 * 5, hence we write "6.2.1".
   n     a(n)  Exp.   b(a(n))
  --------------------------
   1      12   2.1        1   2*6
   2      36   2.2        2   2*18 = 3*12
   3     144   4.2        3   2*72 = 3*48 = 4*36
   4     576   6.2        4   2*288 = 3*192 = 4*144 = 8*72
   5     720   4.2.1      5   2*360 = 3*240 = 4*180 = 6*120 = 12*60
   6     900   2.2.2      6
   7    2880   6.2.1      7
   8    3600   4.2.2      9
   9   14400   6.2.2     12
  10   32400   4.4.2     13
  11   44100   2.2.2.2   14
  12   57600   8.2.2     15
		

Crossrefs

Programs

  • Mathematica
    (* Load function f at A025487 *)
    r = 0;
    s = Select[Union@ Flatten@ f[8][[3 ;; -1]], Not @* SquareFreeQ];
    nn = Length[s]; Print[nn];
    Reap[Monitor[
      Do[k = s[[i]];
        If[# > r, r = #; Sow[k]] &@
          Count[Transpose@ {#, k/#} &@ #[[2 ;; Ceiling[Length[#]/2]]] &@ Divisors[k],
            _?((m = GCD @@ {##};
              And[! MemberQ[{1, #2}, m],
              m == #1,
              ! Divisible[#1, rad[#2]]]) & @@ # &)], {i, nn}], i] ][[-1, 1]]