cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380040 E.g.f. A(x) satisfies A(x) = 1/( 1 - 3*x*exp(x*A(x)) )^(2/3).

This page as a plain text file.
%I A380040 #9 Jan 11 2025 10:27:46
%S A380040 1,2,14,170,3000,69930,2033212,70972734,2894590064,135164076722,
%T A380040 7113787010100,416759006663142,26903080612468744,1897553477118350922,
%U A380040 145204649027247413996,11982094054396851014030,1060673494236770414806752,100265097180082772515691874,10080871201186661027182272868
%N A380040 E.g.f. A(x) satisfies A(x) = 1/( 1 - 3*x*exp(x*A(x)) )^(2/3).
%F A380040 E.g.f.: B(x)^2, where B(x) is the e.g.f. of A380041.
%F A380040 a(n) = 2 * n! * Sum_{k=0..n} 3^k * k^(n-k) * binomial(2*n/3+k/3+2/3,k)/( (2*n+k+2)*(n-k)! ).
%o A380040 (PARI) a(n) = 2*n!*sum(k=0, n, 3^k*k^(n-k)*binomial(2*n/3+k/3+2/3, k)/((2*n+k+2)*(n-k)!));
%Y A380040 Cf. A380039, A380041.
%K A380040 nonn
%O A380040 0,2
%A A380040 _Seiichi Manyama_, Jan 10 2025