This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380054 #12 Jan 28 2025 08:40:03 %S A380054 1,1,2,4,10,27,78,234,722,2275,7288,23662,77676,257372,859592,2890838, %T A380054 9781066,33271759,113720380,390354292,1345099574,4651222825, %U A380054 16134691254,56132722306,195807489940,684712787166,2399784312560,8428460653683,29660054158020,104564729164209,369263035193928 %N A380054 G.f. A(x) satisfies: A( A(x)^3 - A(x)^4 ) = x*A(x)^2. %H A380054 Paul D. Hanna, <a href="/A380054/b380054.txt">Table of n, a(n) for n = 1..800</a> %F A380054 G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas. %F A380054 (1) A( A(x)^3 - A(x)^4 ) = x*A(x)^2. %F A380054 (2) A( A(x^3 - x^4)/x^2 ) = x. %F A380054 (3) A( x^3*A(x)^6 - x^4*A(x)^8 ) = x^2*A(x)^7 - x^2*A(x)^8. %e A380054 G.f.: A(x) = x + x^2 + 2*x^3 + 4*x^4 + 10*x^5 + 27*x^6 + 78*x^7 + 234*x^8 + 722*x^9 + 2275*x^10 + 7288*x^11 + 23662*x^12 + ... %e A380054 where A( A(x)^3 - A(x)^4 ) = x*A(x)^2. %e A380054 RELATED SERIES. %e A380054 A(x)^2 = x^2 + 2*x^3 + 5*x^4 + 12*x^5 + 32*x^6 + 90*x^7 + 266*x^8 + 812*x^9 + 2540*x^10 + 8094*x^11 + 26175*x^12 + ... %e A380054 A(x)^3 = x^3 + 3*x^4 + 9*x^5 + 25*x^6 + 72*x^7 + 213*x^8 + 650*x^9 + 2031*x^10 + 6468*x^11 + 20911*x^12 + ... %e A380054 A(x)^4 = x^4 + 4*x^5 + 14*x^6 + 44*x^7 + 137*x^8 + 428*x^9 + 1356*x^10 + 4356*x^11 + 14172*x^12 + ... %e A380054 A(x)^3 - A(x)^4 = x^3 + 2*x^4 + 5*x^5 + 11*x^6 + 28*x^7 + 76*x^8 + 222*x^9 + 675*x^10 + 2112*x^11 + 6739*x^12 + ... %e A380054 where A( A(x)^3 - A(x)^4 ) = x*A(x)^2. %e A380054 A(x^3 - x^4) = x^3 - x^4 + x^6 - 2*x^7 + x^8 + 2*x^9 - 6*x^10 + 6*x^11 + 2*x^12 - 16*x^13 + 24*x^14 - 6*x^15 - 46*x^16 + 100*x^17 + ... %e A380054 where A( A(x^3 - x^4)/x^2 ) = x. %e A380054 SPECIFIC VALUES. %e A380054 A(t) = 1/2 at t = 0.2678682825020918584942447191444903207470935323567861688... %e A380054 where t = 4*A(1/16). %e A380054 A(t) = 1/3 at t = 0.22799441817101628768717375008489549860256300353023... %e A380054 where t = 9*A(2/81). %e A380054 A(t) = 1/4 at t = 0.18975000755140499291247741716088108267639370901968... %e A380054 where t = 16*A(3/256). %e A380054 A(t) = 1/5 at t = 0.16103727770377462400703035576859030894590037720684... %e A380054 where t = 25*A(4/625). %e A380054 A(1/4) = 0.40005905355209688194814753676993854678408305235431... %e A380054 A(1/5) = 0.26996802842755752057486556320865534828975851625757... %e A380054 A(1/6) = 0.20922644319240454092240843641248261969698502660818... %e A380054 A(1/7) = 0.17175484499974821882568013761069558774534487935356... %e A380054 A(1/8) = 0.14597605882140622742419332319857860821190968837477... %e A380054 A(1/16) = 0.06696707062552296462356117978612258018677338308919... %e A380054 where A( 4*A(1/16) ) = 1/2. %o A380054 (PARI) /* From definition A( A(x)^3 - A(x)^4 ) = x*A(x)^2 */ %o A380054 {a(n) = my(A=[1, 1]); for(i=1, n, A = concat(A, 0); G=x*Ser(A); A[#A] = -Vec( subst(G, x, G^3 - G^4 )/G )[#A] ); A[n]} %o A380054 for(n=1, 40, print1(a(n), ", ")) %o A380054 (PARI) /* Using Series Reversion of A(x^3-x^4)/x^2 */ %o A380054 {a(n) = my(A=x); for(i=1, n, A = serreverse( subst(A, x, x^3 - x^4 +x^3*O(x^n))/x^2) ); polcoeff(A, n)} %o A380054 for(n=1, 40, print1(a(n), ", ")) %Y A380054 Cf. A268655. %K A380054 nonn %O A380054 1,3 %A A380054 _Paul D. Hanna_, Jan 27 2025