cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380071 Integers with at least 1 instance of 2 or more Pythagorean proper factorizations that yield the same diagonal length.

Original entry on oeis.org

880, 1344, 3120, 3240, 3840, 4032, 4400, 5184, 5280, 6144, 6300, 6480, 6720, 7680, 8448, 8640, 10752, 11520, 11880, 12096, 14080, 14592, 14784, 14960, 15120, 15360, 16128, 16200, 16560, 17820, 18240, 18432, 19200, 19440, 20700, 21120, 21504, 21840, 22000
Offset: 1

Views

Author

Charles L. Hohn, Jan 11 2025

Keywords

Comments

a(15) = 8448 is the smallest term with more than 1 instance ({2, 2, 2, 2, 2, 2, 11, 12} and {2, 6, 8, 8, 11} -> 17; {2, 2, 2, 2, 2, 3, 4, 22} and {2, 2, 11, 12, 16} -> 23).
a(18) = 11520 is the smallest term with an instance of 3 such factorizations ({2, 2, 2, 2, 2, 5, 6, 12} and {2, 2, 2, 4, 4, 9, 10} and {5, 6, 6, 8, 8} -> 15).
a(140) = 78975 is the smallest odd term ({5, 15, 27, 39} and {9, 13, 15, 45} -> 50).

Examples

			a(1) = 880: 2 * 2 * 11 * 20 = 2 * 4 * 5 * 22 = 880 and 2^2 + 2^2 + 11^2 + 20^2 = 2^2 + 4^2 + 5^2 + 22^2 = 23^2.
a(2) = 1344: 2 * 2 * 2 * 2 * 2 * 3 * 14 = 4 * 4 * 7 * 12 = 1344 and 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 3^2 + 14^2 = 4^2 + 4^2 + 7^2 + 12^2 = 15^2.
		

Crossrefs

Subsequence of A380436.

Programs

  • PARI
    is_a380071(x, f=List(), ~m)={if(!m, m=Map()); my(r=x/if(#f, vecprod(Vec(f)), 1)); if(r==1, my(t=sum(i=1, #f, f[i]^2)); if(issquare(t), mapput(m, t, if(mapisdefined(m, t), mapget(m, t), 0)+1)); return(0)); my(d, c=0); fordiv(r, d, if(d==1 || d==x || (#f && d0 && vecmax(m[2])>=2, 1, 0), 0))} \\ Charles L. Hohn, Mar 09 2025