A380073 Long legs of Pythagorean triangles having legs that add up to a square ordered by increasing hypotenuse.
28, 40, 112, 160, 156, 204, 252, 360, 340, 345, 448, 640, 561, 744, 624, 700, 816, 1000, 861, 1008, 1440, 1360, 1380, 1173, 1624, 1372, 1645, 1581, 1404, 1729, 1836, 1960, 1792, 2560, 2244, 2268, 2976, 2496, 3240, 2800, 3060, 3105, 3264, 3577, 3285, 4000, 3816
Offset: 1
Keywords
Examples
28 is in the sequence because 21^2 + 28^2 = 35^2 and 21 + 28 = 7^2.
Links
- Felix Huber, Table of n, a(n) for n = 1..10001
- Eric Weisstein's World of Mathematics, Pythagorean Triple
Programs
-
Maple
# Calculates the first 10001 terms A380073:=proc(M) local i,m,p,q,r,v,w,L,F; L:=[]; m:=M^2+2*M+2; for p from 2 to M do for q to p-1 do if gcd(p,q)=1 and (is(p,even) or is(q,even)) then r:=1; for i in ifactors(p^2-q^2+2*p*q)[2] do if is(i[2],odd) then r:=r*i[1] fi od; w:=r*(p^2+q^2); if w<=m then v:=r*max(p^2-q^2,2*p*q); L:=[op(L),seq([i^2*w,i^2*v],i=1..floor(sqrt(m/w)))] fi fi od od; F:=[]; for i in sort(L) do F:=[op(F),i[2]] od; return op(F) end proc; A380073(4330);
Comments