cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380074 Short legs of Pythagorean triangles having legs that add up to a square ordered by increasing hypotenuse.

Original entry on oeis.org

21, 9, 84, 36, 133, 85, 189, 81, 189, 184, 336, 144, 400, 217, 532, 525, 340, 225, 820, 756, 324, 756, 736, 1036, 57, 1029, 564, 820, 1197, 672, 765, 441, 1344, 576, 1600, 1701, 868, 2128, 729, 2100, 1701, 1656, 1360, 1464, 2044, 900, 1513, 2541, 781, 2340, 3280
Offset: 1

Views

Author

Felix Huber, Jan 18 2025

Keywords

Comments

Corresponding hypotenuses in A380072, long legs in A380073.
Subsequence of A046083 and supersequence of A089547.

Examples

			21 is in the sequence because 21^2 + 28^2 = 35^2 and 21 + 28 = 7^2.
		

Crossrefs

Programs

  • Maple
    # Calculates the first 10001 terms
    A380074:=proc(M)
        local i,m,p,q,r,u,w,L,F;
        L:=[];
        m:=M^2+2*M+2;
        for p from 2 to M do
            for q to p-1 do
                if gcd(p,q)=1 and (is(p,even) or is(q,even)) then
                    r:=1;
                    for i in ifactors(p^2-q^2+2*p*q)[2] do
                        if is(i[2],odd) then
                            r:=r*i[1]
                        fi
                    od;
                    w:=r*(p^2+q^2);
                    if w<=m then
                        u:=r*min(p^2-q^2,2*p*q);
                        L:=[op(L),seq([i^2*w,i^2*u],i=1..floor(sqrt(m/w)))]
                    fi
                fi
            od
        od;
        F:=[];
        for i in sort(L) do
            F:=[op(F),i[2]]
        od;
        return op(F)
    end proc;
    A380074(4330);