A380074 Short legs of Pythagorean triangles having legs that add up to a square ordered by increasing hypotenuse.
21, 9, 84, 36, 133, 85, 189, 81, 189, 184, 336, 144, 400, 217, 532, 525, 340, 225, 820, 756, 324, 756, 736, 1036, 57, 1029, 564, 820, 1197, 672, 765, 441, 1344, 576, 1600, 1701, 868, 2128, 729, 2100, 1701, 1656, 1360, 1464, 2044, 900, 1513, 2541, 781, 2340, 3280
Offset: 1
Keywords
Examples
21 is in the sequence because 21^2 + 28^2 = 35^2 and 21 + 28 = 7^2.
Links
- Felix Huber, Table of n, a(n) for n = 1..10001
- Eric Weisstein's World of Mathematics, Pythagorean Triple
Programs
-
Maple
# Calculates the first 10001 terms A380074:=proc(M) local i,m,p,q,r,u,w,L,F; L:=[]; m:=M^2+2*M+2; for p from 2 to M do for q to p-1 do if gcd(p,q)=1 and (is(p,even) or is(q,even)) then r:=1; for i in ifactors(p^2-q^2+2*p*q)[2] do if is(i[2],odd) then r:=r*i[1] fi od; w:=r*(p^2+q^2); if w<=m then u:=r*min(p^2-q^2,2*p*q); L:=[op(L),seq([i^2*w,i^2*u],i=1..floor(sqrt(m/w)))] fi fi od od; F:=[]; for i in sort(L) do F:=[op(F),i[2]] od; return op(F) end proc; A380074(4330);
Comments