A380079 Start with a list of the positive integers L in increasing order. Then, at turn n>=1, element n jumps from its current position, m, to position m+n. Then a(n) = L(m+1).
2, 1, 2, 5, 3, 7, 4, 5, 10, 6, 7, 13, 8, 15, 9, 10, 18, 11, 20, 12, 13, 23, 14, 15, 26, 16, 28, 17, 18, 31, 19, 20, 34, 21, 36, 22, 23, 39, 24, 41, 25, 26, 44, 27, 28, 47, 29, 49, 30, 31, 52, 32, 54, 33, 34, 57, 35, 36, 60, 37, 62, 38, 39, 65, 40, 41, 68, 42, 70, 43, 44, 73, 45, 75
Offset: 1
Keywords
Examples
We start with 1,2,3,4,5,6,7,8,9,10... First, 1 jumps over 2, so, a(1) = 2. In the second turn, 2 jumps over 1 and 3, so, a(2) =1. In the third turn, 3 jumps over 2,4, and 5, so a(3) = 2. And so on.
Links
- M. F. Hasler, Table of n, a(n) for n = 1..500, May 08 2025
- Jeffrey Shallit, The Hurt-Sada Array and Zeckendorf Representations, arXiv:2501.08823 [math.NT], 2025. See p. 2.
Programs
-
Python
M = list() def moves(n, L): if n == 0: return L return move(n, moves(n-1,L)) def move(n, L): pos = L.index(n) M.append(L[pos+1]) return L[:pos]+L[pos+1:pos+n+1]+[n]+L[pos+n+1:] def seq(n): return moves(n, list(range(1,5*n))) seq(74) print(M) # David Nacin via Seqfan, Jan 10 2025
-
Python
def aupton(nn): L, out = list(range(1, 2*nn+2)), [] for n in range(1, nn+1): m = L.index(n) out.append(L[m+1]) L.insert(m+n+1, n) L.pop(m) return out print(aupton(74)) # Michael S. Branicky, Jan 13 2025
Formula
From Jeffrey Shallit, Jan 13 2025: (Start)
If n belongs to A003622, then a(n) = n+1. Otherwise, a(A022342(n)) = n-1 for n >= 1. This can be proved with the Walnut theorem prover.
Alternatively, let g = (1+sqrt(5))/2, and let p be the fractional part of (n+1)*g. If p < 2-g, then a(n) = n+1. If p > 2-g, then a(n) = floor((n+1)/g). (End)
Comments