A380085 The largest unitary divisor of n that is a term in A276078.
1, 2, 3, 1, 5, 6, 7, 1, 9, 10, 11, 3, 13, 14, 15, 1, 17, 18, 19, 5, 21, 22, 23, 3, 25, 26, 1, 7, 29, 30, 31, 1, 33, 34, 35, 9, 37, 38, 39, 5, 41, 42, 43, 11, 45, 46, 47, 3, 49, 50, 51, 13, 53, 2, 55, 7, 57, 58, 59, 15, 61, 62, 63, 1, 65, 66, 67, 17, 69, 70, 71
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := p^If[e <= PrimePi[p], e, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^if(f[i,2] <= primepi(f[i,1]), f[i,2], 0));}
Formula
Multiplicative with a(p^e) = p^e if e <= pi(p) = A000720(p), and 1 otherwise.
a(n) = 1 if and only if n is in A325127.
a(n) = n if and only if n is in A276078.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{k>=1} (p(k)^(2*(k+1)) + p(k)^(2*k+1) - p(k)^(k+1) - p(k)^k + 1)/(p(k)^(2*k+1) * (p(k)+1)) = 0.76189494803691349595..., where p(k) = prime(k).