A380086 The number of unitary divisors of n that are terms in A276078.
1, 2, 2, 1, 2, 4, 2, 1, 2, 4, 2, 2, 2, 4, 4, 1, 2, 4, 2, 2, 4, 4, 2, 2, 2, 4, 1, 2, 2, 8, 2, 1, 4, 4, 4, 2, 2, 4, 4, 2, 2, 8, 2, 2, 4, 4, 2, 2, 2, 4, 4, 2, 2, 2, 4, 2, 4, 4, 2, 4, 2, 4, 4, 1, 4, 8, 2, 2, 4, 8, 2, 2, 2, 4, 4, 2, 4, 8, 2, 2, 1, 4, 2, 4, 4, 4, 4
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[p_, e_] := If[e <= PrimePi[p], 2, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~,if(f[i,2] <= primepi(f[i,1]), 2, 1));}
Formula
Multiplicative with a(p^e) = 2 if e <= pi(p) = A000720(p), and 1 otherwise.
a(n) = 1 if and only if n is in A325127.
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 1/p^s - 1/p^((pi(p)+1)*s)).
Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A034444(k) = Product_{p prime} (1 - 1/(2*p^(pi(p)+1))) = 0.85808348184674088116... .
Comments