This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380113 #32 Apr 25 2025 23:39:51 %S A380113 1,1,1,3,4,1,10,15,6,1,35,56,28,8,1,126,210,120,45,10,1,462,792,495, %T A380113 220,66,12,1,1716,3003,2002,1001,364,91,14,1,6435,11440,8008,4368, %U A380113 1820,560,120,16,1,24310,43758,31824,18564,8568,3060,816,153,18,1 %N A380113 Triangle read by rows: The inverse matrix of the central factorials A370707, row n normalized by (-1)^(n - k)*A370707(n, n). %C A380113 The inverse matrix of A370707 is a rational matrix and the normalization serves to make it a matrix over the integers. Note that the normalization factor A370707(n, n) = FallingFactorial(n, n) * RisingFactorial(n, n) extends A002674 to n = 0. %H A380113 Paolo Xausa, <a href="/A380113/b380113.txt">Table of n, a(n) for n = 0..11475</a> (rows 0..150 of triangle, flattened). %F A380113 T(n, k) = (-1)^(n - k) * ff(n, n) * rf(n, n) * M^(-1)(ff(n, k) * rf(n, k)) where ff denotes the falling factorial, rf the rising factorial and M^(-1)(t(n, k)) the matrix inverse to the matrix with entries t(n, k). %F A380113 T(n, k) = binomial(2*n, n - k) for 0 < k < n. T(n, n) = 1; T(n, 0) = (-1)^n*binomial(-n, n). %F A380113 Sum_{k=0..n} T(n, k)*cos(k*x) = 2^(n-1)*(cos(x)+1)^n. (After _Philippe Deléham_ in A008311). %e A380113 Triangle starts: %e A380113 [0] [ 1] %e A380113 [1] [ 1, 1] %e A380113 [2] [ 3, 4, 1] %e A380113 [3] [ 10, 15, 6, 1] %e A380113 [4] [ 35, 56, 28, 8, 1] %e A380113 [5] [ 126, 210, 120, 45, 10, 1] %e A380113 [6] [ 462, 792, 495, 220, 66, 12, 1] %e A380113 [7] [ 1716, 3003, 2002, 1001, 364, 91, 14, 1] %e A380113 [8] [ 6435, 11440, 8008, 4368, 1820, 560, 120, 16, 1] %e A380113 [9] [24310, 43758, 31824, 18564, 8568, 3060, 816, 153, 18, 1] %e A380113 . %e A380113 Row 3 of the matrix inverse of the central factorials is [-1/36, 1/24, -1/60, 1/360]. Normalized with (-1)^(n-k)*360 gives row 3 of T. %p A380113 T := (n, k) -> if n = k then 1 elif k = 0 then binomial(2*n, n - k)/2 else binomial(2*n, n - k) fi: seq(seq(T(n, k), k = 0..n), n = 0..9); %t A380113 A380113[n_, k_] := Binomial[2*n, n - k]/(Boole[k == 0 && n > 0] + 1); %t A380113 Table[A380113[n, k], {n, 0, 10}, {k, 0, n}] (* _Paolo Xausa_, Jan 13 2025 *) %o A380113 (SageMath) %o A380113 def Trow(n): %o A380113 def cf(n, k): return falling_factorial(n, k)*rising_factorial(n, k) %o A380113 def w(n): return factorial(n)*rising_factorial(n, n) %o A380113 m = matrix(QQ, n + 1, lambda x, y: cf(x, y)).inverse() %o A380113 return [(-1)^(n-k)*w(n)*m[n, k] for k in range(n+1)] %o A380113 for n in range(10): print(Trow(n)) %Y A380113 Variant: A094527. %Y A380113 Cf. A370707, A002674, A008311, A088218 and A110556 (column 0), A081294 (row sums), A000007 (alternating row sums), A005810 (central terms). %K A380113 nonn,tabl %O A380113 0,4 %A A380113 _Peter Luschny_, Jan 12 2025