cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A380114 Triangle read by rows: The convolution triangle of 2^n, where the convolution triangle of a sequence is defined in A357368.

Original entry on oeis.org

1, 0, 2, 0, 4, 4, 0, 8, 16, 8, 0, 16, 48, 48, 16, 0, 32, 128, 192, 128, 32, 0, 64, 320, 640, 640, 320, 64, 0, 128, 768, 1920, 2560, 1920, 768, 128, 0, 256, 1792, 5376, 8960, 8960, 5376, 1792, 256, 0, 512, 4096, 14336, 28672, 35840, 28672, 14336, 4096, 512
Offset: 0

Views

Author

Peter Luschny, Feb 03 2025

Keywords

Examples

			Triangle begins:
  [0] [1]
  [1] [0,   2]
  [2] [0,   4,    4]
  [3] [0,   8,   16,     8]
  [4] [0,  16,   48,    48,    16]
  [5] [0,  32,  128,   192,   128,    32]
  [6] [0,  64,  320,   640,   640,   320,    64]
  [7] [0, 128,  768,  1920,  2560,  1920,   768,   128]
  [8] [0, 256, 1792,  5376,  8960,  8960,  5376,  1792,  256]
  [9] [0, 512, 4096, 14336, 28672, 35840, 28672, 14336, 4096, 512]
		

Crossrefs

Cf. A357368, A081294 (row sums), A380115 (row max), A038207 (2^(n-1)), A097805.

Programs

  • Mathematica
    A380114[n_, k_] := 2^n*Binomial[n - 1, k - 1];
    Table[A380114[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Feb 05 2025  *)
  • Python
    # The function ConvTriangle is defined in A357368.
    print(ConvTriangle(10, lambda n: 2**n))

Formula

T(n, k) = 2^n * A097805(n, k). - Werner Schulte, Feb 04 2025
Showing 1-1 of 1 results.