This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380119 #14 Jan 21 2025 13:33:50 %S A380119 1,2,2,10,16,6,70,140,90,20,588,1344,1134,448,70,5544,13860,13860, %T A380119 7392,2100,252,56628,151008,169884,109824,42900,9504,924,613470, %U A380119 1717716,2108106,1561560,750750,231660,42042,3432,6952660,20225920,26546520,21781760,12155000,4667520,1191190,183040,12870 %N A380119 Triangle read by rows: T(n, k) is the number of walks of length 2*n on the N X N grid with unit steps in all four directions (NSWE) starting at (0, 0). k is the common value of the x- and the y-coordinate of the endpoint of the walk. %H A380119 M. Bousquet-Mélou and M. Mishna, <a href="https://doi.org/10.48550/arXiv.0810.4387">Walks with small steps in the quarter plane</a>, arXiv:0810.4387 [math.CO], 2008. %H A380119 Richard K. Guy, Christian Krattenthaler and Bruce E. Sagan, <a href="http://www.mat.univie.ac.at/~kratt/artikel/paths.html">Lattice paths, reflections, & dimension-changing bijections</a>, Ars Combin. 34 (1992), 3-15. %e A380119 The triangle starts: %e A380119 [0] [ 1] %e A380119 [1] [ 2, 2] %e A380119 [2] [ 10, 16, 6] %e A380119 [3] [ 70, 140, 90, 20] %e A380119 [4] [ 588, 1344, 1134, 448, 70] %e A380119 [5] [ 5544, 13860, 13860, 7392, 2100, 252] %e A380119 [6] [ 56628, 151008, 169884, 109824, 42900, 9504, 924] %e A380119 [7] [ 613470, 1717716, 2108106, 1561560, 750750, 231660, 42042, 3432] %e A380119 [8] [6952660, 20225920, 26546520, 21781760, 12155000, 4667520, 1191190, 183040, 12870] %e A380119 . %e A380119 For n = 2 the walks depending on the x-coordinate of the endpoint are: %e A380119 W(x=0) = {NNSS,NSNS,NSWE,NWSE,NWES,WNSE,WNES,WWEE,WENS,WEWE}, %e A380119 W(x=1) = {NNSW,NNWS,NSNW,NSWN,NWNS,NWSN,NWWE,NWEW,WNNS,WNSN,WNWE,WNEW,WWNE,WWEN,WENW,WEWN}, %e A380119 W(x=2) = {NNWW,NWNW,NWWN,WNNW,WNWN,WWNN}. %o A380119 (Python) %o A380119 from dataclasses import dataclass %o A380119 @dataclass %o A380119 class Walk: s: str = ""; x: int = 0; y: int = 0 %o A380119 def Trow(n: int) -> list[int]: %o A380119 W = [Walk()] %o A380119 row = [0] * (n + 1) %o A380119 for w in W: %o A380119 if len(w.s) == 2*n: %o A380119 if w.x == w.y: row[w.y] += 1 %o A380119 else: %o A380119 for s in "NSWE": %o A380119 x = y = 0 %o A380119 match s: %o A380119 case "W": x = 1 %o A380119 case "E": x = -1 %o A380119 case "N": y = 1 %o A380119 case "S": y = -1 %o A380119 case _ : pass %o A380119 if (w.y + y >= 0) and (w.x + x >= 0): %o A380119 W.append(Walk(w.s + s, w.x + x, w.y + y)) %o A380119 return row %o A380119 for n in range(6): print(Trow(n)) %Y A380119 Related triangles: A380120. %Y A380119 Cf. A005568 (column 0), A000984 (main diagonal), A253487 (sub diagonal), A151403 (row sums). %K A380119 nonn,tabl,walk %O A380119 0,2 %A A380119 _Peter Luschny_, Jan 19 2025