This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380126 #24 Aug 24 2025 15:56:49 %S A380126 1,1,3,6,14,26,58,106,214,394,742,1314,2406,4139,7234,12250,20778, %T A380126 34279,56805,91866,148816,236772,375899,588208,919235,1417538,2180608, %U A380126 3320197,5038918,7577850,11363516,16899942,25056925,36892553,54136934,78951553,114783293,165922204 %N A380126 Total number of ways of partitioning n and any natural number less than or equal to n into the same number of parts, not treating partitions of n and itself in a different order as distinct. %H A380126 Alois P. Heinz, <a href="/A380126/b380126.txt">Table of n, a(n) for n = 0..1000</a> %F A380126 a(n) = Sum_{i=0..n-1} Sum_{j=0..i} p(n,j)*p(i,j) + Sum_{j=0..n} (p(n,j)*(p(n,j)+1))/2, where p(n,j) is the number of partitions of n into j positive parts (A008284, A072233). %e A380126 For example, a(4)=14: %e A380126 4 and 1: (4,1), %e A380126 4 and 2: (4,2) (3+1,1+1) (2+2,1+1), %e A380126 4 and 3: (4,3) (3+1,2+1) (2+2,2+1) (2+1+1,1+1+1), %e A380126 4 and 4: (4,4) (3+1,3+1) (3+1,2+2) (2+2,2+2) (2+1+1,2+1+1) (1+1+1+1,1+1+1+1). %e A380126 Note that (3+1,2+2) and (2+2,3+1) are not both counted. %Y A380126 Similar to A380124, A380125. %Y A380126 Cf. A008284, A072233. %K A380126 nonn,changed %O A380126 0,3 %A A380126 _Aidan Markey_, Jan 12 2025 %E A380126 More terms from _Chai Wah Wu_, Feb 19 2025 %E A380126 a(0)=1 prepended by _Alois P. Heinz_, Aug 24 2025