This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380128 #6 Jan 25 2025 12:57:24 %S A380128 1,1,1,3,0,1,10,1,-1,1,35,4,0,-2,1,126,15,1,0,-3,1,462,56,5,0,1,-4,1, %T A380128 1716,210,21,1,0,3,-5,1,6435,792,84,6,0,0,6,-6,1,24310,3003,330,28,1, %U A380128 0,-1,10,-7,1,92378,11440,1287,120,7,0,0,-4,15,-8,1,352716,43758,5005,495,36,1,0,0,-10,21,-9,1 %N A380128 Triangle read by rows: Riordan array (1/(C(x)*sqrt(1-4*x)), x/C(x)) where C(x) is g.f. of A000108. %F A380128 G.f.: 1/((C(t) - x*t) * sqrt(1 - 4*t)) where C(t) is g.f. of A000108. %F A380128 Inverse Riordan array is (2 - D(x), x * D(x)) where D(x) is g.f. of A001764. %F A380128 Conjecture: T(n, k) = Sum_{i=0..n-k} (-1)^i * binomial(2*n - 2*k, n - k - i) * binomial(k + i, i). %e A380128 Triangle T(n, k) for 0 <= k <= n starts: %e A380128 n \k : 0 1 2 3 4 5 6 7 8 9 10 11 %e A380128 ================================================================= %e A380128 0 : 1 %e A380128 1 : 1 1 %e A380128 2 : 3 0 1 %e A380128 3 : 10 1 -1 1 %e A380128 4 : 35 4 0 -2 1 %e A380128 5 : 126 15 1 0 -3 1 %e A380128 6 : 462 56 5 0 1 -4 1 %e A380128 7 : 1716 210 21 1 0 3 -5 1 %e A380128 8 : 6435 792 84 6 0 0 6 -6 1 %e A380128 9 : 24310 3003 330 28 1 0 -1 10 -7 1 %e A380128 10 : 92378 11440 1287 120 7 0 0 -4 15 -8 1 %e A380128 11 : 352716 43758 5005 495 36 1 0 0 -10 21 -9 1 %e A380128 etc. %o A380128 (PARI) T(n, k) = polcoef(polcoef(1/((C(t)-x*t)*sqrt(1-4*t))+x*O(x^k), k, x)+t*O(t^n), n, t); %o A380128 m = matrix(15, 15, n, k, if(k>n, 0, T(n-1, k-1))) %Y A380128 Cf. A088218 (column 0), A001791 (column 1), A000007 (central terms). %Y A380128 Cf. A000108, A001764. %K A380128 sign,easy,tabl %O A380128 0,4 %A A380128 _Werner Schulte_, Jan 12 2025