This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380130 #19 Jan 13 2025 11:32:05 %S A380130 1,6,13,34,87,229,581,1591,4268,11637,31944,88526,246105,688982, %T A380130 1936129,5463517,15470445 %N A380130 For n >= 2, let b(n) = 1 if A379784(n) is 3 mod 4, 0 if A379784(n) is 1 mod 4; form the RUNS transform of {b(n), n >= 2}. %e A380130 A379784 begins 1, 5, 3, 7, 11, 19, 23, 31, 13, 17, 29, 37, ..., and the {b(n), n >= 2} sequence begins 0, 1, 1, 1, 1, 1, 1, 0, ..., whose RUNS transform is 1, 6, ... %t A380130 nn = 2^19; c[_] := True; q = 0; j = r = 1; s = 4; %t A380130 Monitor[Rest@ Reap[Do[m = j + s; %t A380130 While[Set[k, SelectFirst[FactorInteger[m][[All, 1]], c]]; %t A380130 ! IntegerQ[k], m += s]; %t A380130 c[k] = False; j = k; %t A380130 If[# == r, q++, r = #; Sow[q]; q = 1] &[(Mod[k, 4] - 1)/2], %t A380130 {n, nn}] ][[-1, 1]], n] (* _Michael De Vlieger_, Jan 13 2025 *) %o A380130 (Python) %o A380130 from sympy import primefactors %o A380130 prev_a379784 = 1 %o A380130 prev_b = -1 %o A380130 b_run = 0 %o A380130 a379784_set = set([prev_a379784]) %o A380130 seq = [] %o A380130 max_seq_len = 17 %o A380130 while len(seq) < max_seq_len: %o A380130 c = prev_a379784 %o A380130 done = False %o A380130 while not done: %o A380130 c = c + 4 %o A380130 factors = primefactors(c) %o A380130 for factor in factors: %o A380130 if factor not in a379784_set: %o A380130 a379784_set.add(factor) %o A380130 if factor % 4 == 3: %o A380130 b = 1 %o A380130 else: %o A380130 b = 0 %o A380130 if prev_b >= 0: %o A380130 if b == prev_b: %o A380130 b_run += 1 %o A380130 else: %o A380130 seq.append(b_run) %o A380130 b_run = 1 %o A380130 else: %o A380130 b_run = 1 %o A380130 prev_b = b %o A380130 prev_a379784 = factor %o A380130 done = True %o A380130 break %o A380130 print(seq) %Y A380130 Cf. A091237, A379783, A379784. %Y A380130 See also A379652, A379785. %K A380130 nonn,more %O A380130 1,2 %A A380130 _Robert C. Lyons_, Jan 12 2025