This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380143 #23 Jan 19 2025 09:29:41 %S A380143 16,20,21,48,27,28,24,25,32,60,55,39,40,32,44,45,112,65,36,84,84,52, %T A380143 72,35,91,57,36,96,36,140,44,63,64,45,123,40,68,108,48,85,120,75,172, %U A380143 96,80,136,132,56,95,48,240,49,88,48,141,92,108,93,50,196,52,172 %N A380143 Sum of divisors d | k such that d and k/d share factors but both have a factor that does not divide the other, where k is in A375055. %C A380143 In other words, sum of divisors d | k such that gcd(d, k/d) > 1 but neither rad(d) | k/d nor rad(k/d) | d, where rad = A007947 and k is in A375055. %C A380143 Define quality Q pertaining to 2 natural numbers a and b such that gcd(a, b) > 1 but neither rad(a) | b nor rad(b) | a. %C A380143 Define function f(x) = A379752 to be the cardinality of divisor pairs (d, x/d) that have quality Q. f(x) > 0 for x in A375055, otherwise f(x) = 0. %H A380143 Michael De Vlieger, <a href="/A380143/b380143.txt">Table of n, a(n) for n = 1..10000</a> %H A380143 Michael De Vlieger, <a href="/A380143/a380143.png">Log log scatterplot of a(n)</a>, n = 1..2^16. %e A380143 Let s = A375055. %e A380143 a(1) = 16 since s(1) = 60 = 6*10; 6 + 10 = 16. %e A380143 a(2) = 20 since s(2) = 84 = 6*14; 6 + 14 = 20. %e A380143 a(3) = 21 since s(3) = 90 = 6*15; 6 + 15 = 21. %e A380143 a(4) = 48 since s(4) = 120 = 6*20 = 10*12; 6 + 20 + 10 + 12 = 48, etc. %t A380143 nn = 540; rad[x_] := Times @@ FactorInteger[x][[All, 1]]; %t A380143 s = Select[Range[nn], PrimeOmega[#] > PrimeNu[#] > 2 & ]; %t A380143 Table[k = s[[n]]; %t A380143 DivisorSum[k, # &, %t A380143 And[1 < GCD @@ {##}, %t A380143 Nor[Divisible[#2, rad[#1] ], %t A380143 Divisible[#1, rad[#2] ] ] ] & @@ %t A380143 {#, k/#} &], {n, Length[s]}] %Y A380143 Cf. A007947, A375055, A379752. %K A380143 nonn %O A380143 1,1 %A A380143 _Michael De Vlieger_, Jan 18 2025