cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380160 a(n) is the value of the Euler totient function when applied to the powerful part of n.

This page as a plain text file.
%I A380160 #10 Jan 14 2025 01:52:16
%S A380160 1,1,1,2,1,1,1,4,6,1,1,2,1,1,1,8,1,6,1,2,1,1,1,4,20,1,18,2,1,1,1,16,1,
%T A380160 1,1,12,1,1,1,4,1,1,1,2,6,1,1,8,42,20,1,2,1,18,1,4,1,1,1,2,1,1,6,32,1,
%U A380160 1,1,2,1,1,1,24,1,1,20,2,1,1,1,8,54,1,1,2
%N A380160 a(n) is the value of the Euler totient function when applied to the powerful part of n.
%H A380160 Amiram Eldar, <a href="/A380160/b380160.txt">Table of n, a(n) for n = 1..10000</a>
%F A380160 a(n) = A000010(A057521(n)).
%F A380160 a(n) >= 1, with equality if and only if n is squarefree (A005117).
%F A380160 a(n) <= A000010(n), with equality if and only if n is powerful (A001694).
%F A380160 Multiplicative with a(p) = 1, and a(p^e) = (p-1)*p^(e-1) if e >= 2.
%F A380160 Dirichlet g.f.: zeta(s-1) * Product_{p prime} (1 + 1/p^s - 1/p^(s-1) + 1/p^(2*s-2) - 2/p^(2*s-1)).
%F A380160 Sum_{k=1..n} a(k) ~ c * n^(3/2) / 3, where c = Product_{p prime} (1 + 2/p^(3/2) - 1/p^2 - 2/p^(5/2)) = 1.96428740396979919886... .
%t A380160 f[p_, e_] := If[e == 1, 1, (p-1)*p^(e-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A380160 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1, 1, (f[i, 1]-1)*f[i, 1]^(f[i, 2]-1)));}
%Y A380160 Cf. A000010, A001694, A005117, A057521, A295294, A295295, A323333, A349379, A357669, A380161.
%K A380160 nonn,easy,mult
%O A380160 1,4
%A A380160 _Amiram Eldar_, Jan 13 2025