cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380161 a(n) is the value of the Euler totient function when applied to the powerfree part of n.

This page as a plain text file.
%I A380161 #8 Jan 14 2025 01:51:41
%S A380161 1,1,2,1,4,2,6,1,1,4,10,2,12,6,8,1,16,1,18,4,12,10,22,2,1,12,1,6,28,8,
%T A380161 30,1,20,16,24,1,36,18,24,4,40,12,42,10,4,22,46,2,1,1,32,12,52,1,40,6,
%U A380161 36,28,58,8,60,30,6,1,48,20,66,16,44,24,70,1,72,36
%N A380161 a(n) is the value of the Euler totient function when applied to the powerfree part of n.
%H A380161 Amiram Eldar, <a href="/A380161/b380161.txt">Table of n, a(n) for n = 1..10000</a>
%F A380161 a(n) = A000010(A055231(n)).
%F A380161 a(n) >= 1, with equality if and only if n is in A335851.
%F A380161 a(n) <= A000010(n), with equality if and only if n is squarefree (A005117).
%F A380161 Multiplicative with a(p) = p-1, and a(p^e) = 1 if e >= 2.
%F A380161 Dirichlet g.f.: zeta(s) * Product_{p prime} (1 - 2/p^s + 1/p^(s-1) - 1/p^(2*s-1) + 2/p^(2*s)).
%F A380161 Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(2) * Product_{p prime} (1 - 2/p^5 + 3/p^4 + 1/p^3 - 3/p^2) = 0.46288631864329056778... .
%t A380161 f[p_, e_] := If[e == 1, p-1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A380161 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1, f[i, 1]-1, 1));}
%Y A380161 Cf. A000010, A005117, A013661, A055231, A056671, A092261, A335851, A380160.
%K A380161 nonn,easy,mult
%O A380161 1,3
%A A380161 _Amiram Eldar_, Jan 13 2025