cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380162 a(n) is the value of the Euler totient function when applied to the largest square dividing n.

This page as a plain text file.
%I A380162 #9 Jan 14 2025 01:51:50
%S A380162 1,1,1,2,1,1,1,2,6,1,1,2,1,1,1,8,1,6,1,2,1,1,1,2,20,1,6,2,1,1,1,8,1,1,
%T A380162 1,12,1,1,1,2,1,1,1,2,6,1,1,8,42,20,1,2,1,6,1,2,1,1,1,2,1,1,6,32,1,1,
%U A380162 1,2,1,1,1,12,1,1,20,2,1,1,1,8,54,1,1,2,1
%N A380162 a(n) is the value of the Euler totient function when applied to the largest square dividing n.
%H A380162 Amiram Eldar, <a href="/A380162/b380162.txt">Table of n, a(n) for n = 1..10000</a>
%F A380162 a(n) = A000010(A008833(n)).
%F A380162 a(n) >= 1, with equality if and only if n is squarefree (A005117).
%F A380162 a(n) <= A000010(n), with equality if and only if n is either a square (A000290) or twice an odd square (A077591 \ {1}).
%F A380162 Multiplicative with a(p) = 1, and a(p^e) = (p-1)*p^(2*floor(e/2)-1) if e >= 2.
%F A380162 Dirichlet g.f.: zeta(s) * zeta(2*s-2) / (zeta(2*s-1) * zeta(2*s)).
%F A380162 Sum_{k=1..n} a(k) ~ c * n^(3/2) / 3, where c = zeta(3/2)/(zeta(2)*zeta(3)) = 1.32118019580177760682... .
%t A380162 f[p_, e_] := If[e == 1, 1, (p-1)*p^(2*Floor[e/2]-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A380162 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1, 1, (f[i, 1]-1) * f[i, 1]^(2*(f[i, 2]\2)-1)));}
%Y A380162 Cf. A000010, A000290, A005117, A008833, A077591, A365331, A365332, A380163.
%Y A380162 Cf. A002117, A013661, A078434.
%K A380162 nonn,easy,mult
%O A380162 1,4
%A A380162 _Amiram Eldar_, Jan 13 2025