cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380163 a(n) is the value of the Euler totient function when applied to the squarefree part of n.

This page as a plain text file.
%I A380163 #9 Jan 14 2025 01:51:51
%S A380163 1,1,2,1,4,2,6,1,1,4,10,2,12,6,8,1,16,1,18,4,12,10,22,2,1,12,2,6,28,8,
%T A380163 30,1,20,16,24,1,36,18,24,4,40,12,42,10,4,22,46,2,1,1,32,12,52,2,40,6,
%U A380163 36,28,58,8,60,30,6,1,48,20,66,16,44,24,70,1,72,36
%N A380163 a(n) is the value of the Euler totient function when applied to the squarefree part of n.
%H A380163 Amiram Eldar, <a href="/A380163/b380163.txt">Table of n, a(n) for n = 1..10000</a>
%F A380163 a(n) = A000010(A007913(n)).
%F A380163 a(n) >= 1, with equality if and only if n is in A028982.
%F A380163 a(n) <= A000010(n), with equality if and only if n is squarefree (A005117).
%F A380163 Multiplicative with a(p^e) = p-1 if e is odd, and 1 otherwise.
%F A380163 Dirichlet g.f.: zeta(2*s) * Product_{p prime} (1 + 1/p^(s-1) - 1/p^s).
%F A380163 Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(4) * Product_{p prime} (1 - 2/p^2 + 1/p^3) = 0.46350438981962928756...
%t A380163 f[p_, e_] := If[OddQ[e], p-1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A380163 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] % 2, f[i, 1]-1, 1));}
%Y A380163 Cf. A000010, A005117, A007913, A013662, A028982, A055076, A367991, A380162.
%K A380163 nonn,easy,mult
%O A380163 1,3
%A A380163 _Amiram Eldar_, Jan 14 2025