cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380164 a(n) is the value of the Euler totient function when applied to the largest unitary divisor of n that is a square.

This page as a plain text file.
%I A380164 #8 Jan 14 2025 01:51:55
%S A380164 1,1,1,2,1,1,1,1,6,1,1,2,1,1,1,8,1,6,1,2,1,1,1,1,20,1,1,2,1,1,1,1,1,1,
%T A380164 1,12,1,1,1,1,1,1,1,2,6,1,1,8,42,20,1,2,1,1,1,1,1,1,1,2,1,1,6,32,1,1,
%U A380164 1,2,1,1,1,6,1,1,20,2,1,1,1,8,54,1,1,2,1,1,1,1,1,6,1,2,1,1,1,1,1,42,6,40
%N A380164 a(n) is the value of the Euler totient function when applied to the largest unitary divisor of n that is a square.
%H A380164 Amiram Eldar, <a href="/A380164/b380164.txt">Table of n, a(n) for n = 1..10000</a>
%F A380164 a(n) = A000010(A350388(n)).
%F A380164 a(n) >= 1, with equality if and only if n is an exponentially odd number (A268335).
%F A380164 a(n) <= A000010(n), with equality if and only if n is either a square (A000290) or twice an odd square (A077591 \ {1}).
%F A380164 Multiplicative with a(p^e) = (p-1)*p^(e-1) if e is even, and 1 otherwise.
%F A380164 Dirichlet g.f.: zeta(2*s-2) * zeta(2*s) * Product_{p prime} (1 + 1/p^s - 1/p^(2*s-1) - 1/p^(2*s) - 1/p^(3*s-2) + 1/p^(4*s-1)).
%F A380164 Sum_{k=1..n} a(k) ~ c * n^(3/2) / 3, where c = zeta(3) * Product_{p prime} (1 + 1/p^(3/2) - 1/p^2 - 1/p^(5/2) - 1/p^3 + 1/p^5) = 1.16404670858123447768... .
%t A380164 f[p_, e_] := If[OddQ[e], 1, (p-1)*p^(e-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A380164 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] % 2, 1, (f[i, 1]-1)*f[i, 1]^(f[i, 2]-1)));}
%Y A380164 Cf. A000010, A000290, A002117, A077591, A268335, A350388, A351568, A365401, A380165.
%K A380164 nonn,easy,mult
%O A380164 1,4
%A A380164 _Amiram Eldar_, Jan 14 2025