cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380165 a(n) is the value of the Euler totient function when applied to the largest unitary divisor of n that is an exponentially odd number.

This page as a plain text file.
%I A380165 #8 Jan 14 2025 01:52:21
%S A380165 1,1,2,1,4,2,6,4,1,4,10,2,12,6,8,1,16,1,18,4,12,10,22,8,1,12,18,6,28,
%T A380165 8,30,16,20,16,24,1,36,18,24,16,40,12,42,10,4,22,46,2,1,1,32,12,52,18,
%U A380165 40,24,36,28,58,8,60,30,6,1,48,20,66,16,44,24,70,4,72
%N A380165 a(n) is the value of the Euler totient function when applied to the largest unitary divisor of n that is an exponentially odd number.
%H A380165 Amiram Eldar, <a href="/A380165/b380165.txt">Table of n, a(n) for n = 1..10000</a>
%F A380165 a(n) = A000010(A350389(n)).
%F A380165 a(n) >= 1, with equality if and only if n is either a square (A000290) or twice and odd square (A077591 \ {1}).
%F A380165 a(n) <= A000010(n), with equality if and only if n is an exponentially odd number (A268335).
%F A380165 Multiplicative with a(p^e) = (p-1)*p^(e-1) if e is odd, and 1 otherwise.
%F A380165 Dirichlet g.f.: zeta(2*s-2) * zeta(2*s) * Product_{p prime} (1 - 1/p^s + 1/p^(s-1) - 1/p^(2*s-2) - 1/p^(3*s-1) + 1/p^(3*s)).
%F A380165 Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(4) * Product_{p prime} (1 - 2/p^2 + 2/p^3 - 2/p^4 + 1/p^5) = 0.50115112192510092436... .
%t A380165 f[p_, e_] := If[OddQ[e], (p-1)*p^(e-1), 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A380165 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] % 2, (f[i, 1]-1)*f[i, 1]^(f[i, 2]-1), 1));}
%Y A380165 Cf. A000010, A000290, A013662, A077591, A268335, A350389, A351569, A365402, A374456, A380164.
%K A380165 nonn,easy,mult
%O A380165 1,3
%A A380165 _Amiram Eldar_, Jan 14 2025