This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380169 #6 Jan 14 2025 07:40:53 %S A380169 1,-1,1,1,-3,1,1,7,-6,1,-13,-5,25,-10,1,47,-83,-60,65,-15,1,73,637, %T A380169 -203,-280,140,-21,1,-2447,-1425,3710,77,-910,266,-28,1,16811,-22341, %U A380169 -21347,13146,2667,-2394,462,-36,1,15551,318149,-50400,-137435,30135,12999,-5460,750,-45,1,-1726511,-1415491,2465969,379940,-579590,32109,43659,-11220,1155,-55 %N A380169 Table T(r,s) read by rows: the coefficient of [k^s] of the Wynn's r-th converging polynomial p_r(k) of Weber functions, 0<=s<=r. %H A380169 P. Wynn, Converging factors for the Weber parabolic cylinder functions of complex argument, <a href="https://doi.org/10.1016/S1385-7258(63)50074-2">part Ib</a>, Proc. Konin. Ned. Akad. Weten., Series A, 66 (1963), 721-754 (two parts). Table VII. %e A380169 The table starts %e A380169 1 %e A380169 -1 1 %e A380169 1 -3 1 %e A380169 1 7 -6 1 %e A380169 -13 -5 25 -10 1 %e A380169 47 -83 -60 65 -15 1 %e A380169 73 637 -203 -280 140 -21 1 %e A380169 -2447 -1425 3710 77 -910 266 -28 1 %e A380169 16811 -22341 -21347 13146 2667 -2394 462 -36 1 %e A380169 15551 318149 -50400 -137435 30135 12999 -5460 750 -45 1 %e A380169 -1726511 -1415491 2465969 379940 -579590 32109 43659 -11220 1155 -55 1 %p A380169 #re-using code of A001664 %p A380169 seq(seq( p(r,s),s=0..r),r=0..12) ; %Y A380169 Cf. A380170 (column s=1), A001664 (column s=2), A001662 (column s=0 apart from signs) %K A380169 tabl,sign %O A380169 0,5 %A A380169 _R. J. Mathar_, Jan 14 2025