Original entry on oeis.org
0, 1, 4, 3, 2, 13, 12, 11, 10, 8, 7, 9, 6, 5, 40, 39, 38, 37, 35, 34, 36, 33, 32, 31, 29, 28, 25, 21, 20, 24, 19, 18, 30, 27, 26, 23, 17, 16, 22, 15, 14, 121, 120, 119, 118, 116, 115, 117, 114, 113, 112, 110, 109, 106, 102, 101, 105, 100, 99, 111, 108, 107
Offset: 0
A380181(42) = 120, so a(120) = 42.
A380180
Irregular table T(n, k), n >= 0, k = 1..2^A005812(n); the n-th row lists the integers m (possibly negative) such that the nonzero digits in the balanced ternary expansion of m appear in the balanced ternary expansion of n.
Original entry on oeis.org
0, 0, 1, -1, 0, 2, 3, 0, 3, 0, 1, 3, 4, -4, -3, -1, 0, 5, 6, 8, 9, -3, 0, 6, 9, -3, -2, 0, 1, 6, 7, 9, 10, -1, 0, 8, 9, 0, 9, 0, 1, 9, 10, -1, 0, 2, 3, 8, 9, 11, 12, 0, 3, 9, 12, 0, 1, 3, 4, 9, 10, 12, 13, -13, -12, -10, -9, -4, -3, -1, 0, 14, 15, 17, 18, 23, 24, 26, 27
Offset: 0
Irregular table T(n, k) begins:
n n-th row
-- -------------------------
0 0
1 0, 1
2 -1, 0, 2, 3
3 0, 3
4 0, 1, 3, 4
5 -4, -3, -1, 0, 5, 6, 8, 9
6 -3, 0, 6, 9
7 -3, -2, 0, 1, 6, 7, 9, 10
8 -1, 0, 8, 9
9 0, 9
10 0, 1, 9, 10
11 -1, 0, 2, 3, 8, 9, 11, 12
12 0, 3, 9, 12
.
Irregular table T(n, k) begins in balanced ternary:
n n-th row
--- --------------------------------
0 0
1 0, 1
1T T, 0, 1T, 10
10 0, 10
11 0, 1, 10, 11
1TT TT, T0, T, 0, 1TT, 1T0, 10T, 100
1T0 T0, 0, 1T0, 100
1T1 T0, T1, 0, 1, 1T0, 1T1, 100, 101
10T T, 0, 10T, 100
100 0, 100
101 0, 1, 100, 101
11T T, 0, 1T, 10, 10T, 100, 11T, 110
110 0, 10, 100, 110
See
A380123 for a similar sequence.
-
row(n) = { my (r = [0], d, t = 1); while (n, d = centerlift(Mod(n, 3)); if (d, r = concat(r, [v + d*t | v <- r]);); n = (n-d)/3; t *= 3;); vecsort(r); }
Showing 1-2 of 2 results.
Comments