cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380198 Difference between pi(2^n) and the integer nearest to 2^n / log(2^n).

This page as a plain text file.
%I A380198 #39 Mar 31 2025 22:59:10
%S A380198 -2,-1,0,0,2,3,5,8,15,24,40,72,119,212,360,633,1128,1989,3580,6386,
%T A380198 11537,20897,37980,69354,127336,234054,431877,799754,1484440,2763961,
%U A380198 5156791,9644970,18080775,33959344,63902732,120474951,227515953,430345298,815241632
%N A380198 Difference between pi(2^n) and the integer nearest to 2^n / log(2^n).
%H A380198 Michael De Vlieger, <a href="/A380198/b380198.txt">Table of n, a(n) for n = 1..92</a>
%F A380198 a(n) = - A053622(2^n).
%F A380198 a(n) = A007053(n) - A050499(2^n).
%e A380198 n   2^n   pi(2^n)  round(2^n/log(2^n))  a(n)
%e A380198 ------------------------------------------------
%e A380198 1     2     1         3                  -2
%e A380198 2     4     2         3                  -1
%e A380198 3     8     4         4                   0
%e A380198 4    16     6         6                   0
%t A380198 Table[PrimePi[2^n]-Round[2^n/Log[2^n]],{n,39}]
%Y A380198 Cf. A000720, A007053, A050499, A053622, A057835.
%K A380198 sign
%O A380198 1,1
%A A380198 _James C. McMahon_, Jan 16 2025