cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380205 Decimal expansion of the generalized log-sine integral with k = 0, n = 3, m = 3, from {0 .. 4 Pi/3} (negated).

This page as a plain text file.
%I A380205 #13 Jan 30 2025 05:07:03
%S A380205 4,2,6,0,2,8,8,7,3,9,1,5,1,0,6,3,1,7,4,3,2,2,6,5,2,9,5,3,7,3,0,5,0,0,
%T A380205 5,3,4,9,8,8,8,8,7,8,7,5,8,6,9,7,8,0,1,3,8,1,5,3,9,1,6,2,5,7,7,2,7,1,
%U A380205 3,4,5,1,4,4,4,4,1,5,2,8,1,5,0,8,7,4,1,4,4,1,4,4,2,9,5,0,2,2,1,5
%N A380205 Decimal expansion of the generalized log-sine integral with k = 0, n = 3, m = 3, from {0 .. 4 Pi/3} (negated).
%H A380205 Jonathan M. Borwein and Armin Straub, <a href="https://carmamaths.org/resources/jon/logsin3.pdf">Special Values of Generalized Log-sine Integrals</a>, ISSAC '11: Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation, 2011, pp. 43-50.
%H A380205 Armin Straub, <a href="https://arminstraub.com/software/lstoli">A Mathematica package for evaluating log-sine integrals</a>
%e A380205 -4.260288739151063174322652953730500534988887875869780138153916257727...
%p A380205 Digits:= 100: evalf(Int(log(3*sin(x/2))^2, x = 0..4*Pi/3)); # _Peter Luschny_, Jan 28 2025
%t A380205 NIntegrate[Log[3*Sin[x/2]]^2, {x, 2*Pi/3, 2*Pi}, WorkingPrecision -> 100]
%Y A380205 Cf. A379042, A379273, A380206.
%K A380205 nonn,cons
%O A380205 1,1
%A A380205 _Detlef Meya_, Jan 16 2025