This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380214 #17 Mar 31 2025 22:01:53 %S A380214 1,2,14,148,2076,36152,750344,18055088,493688976,15108697632, %T A380214 511379579104,18959550197568,763909806479296,33227876172374912, %U A380214 1551519044372535424,77391560357497815808,4106518327272819159296,230931323981550384824832,13718006864544800838290944 %N A380214 Expansion of e.g.f. exp( 1/(1-3*x)^(2/3) - 1 ). %F A380214 a(n) = Sum_{k=0..n} 2^k * 3^(n-k) * |Stirling1(n,k)| * Bell(k). %F A380214 a(n) = (1/e) * (-3)^n * n! * Sum_{k>=0} binomial(-2*k/3,n)/k!. %F A380214 E.g.f.: B(x)^2, where B(x) is the e.g.f. of A380257. %t A380214 CoefficientList[Series[Exp[ 1/(1-3*x)^(2/3) - 1],{x,0,18}],x]Range[0,18]! (* _Stefano Spezia_, Mar 31 2025 *) %o A380214 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(1/(1-3*x)^(2/3)-1))) %Y A380214 Cf. A049119, A380257. %K A380214 nonn %O A380214 0,2 %A A380214 _Seiichi Manyama_, Jan 16 2025